Extracurricular laboratory: Synthetic route of 12080-32-9

Although many compounds look similar to this compound(12080-32-9)Formula: C8H12Cl2Pt, numerous studies have shown that this compound(SMILES:C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 12080-32-9, is researched, SMILESS is C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-], Molecular C8H12Cl2PtJournal, Applied Organometallic Chemistry called Platinum(II) complexes bearing bulky Schiff base ligands anchored onto mesoporous SBA-15 supports as efficient catalysts for hydrosilylation, Author is Huo, Yingpeng; Hu, Jiwen; Lin, Shudong; Ju, Xingming; Wei, Yanlong; Huang, Zhenzhu; Hu, Yangfei; Tu, Yuanyuan, the main research direction is silica supported naphthalenolimine Schiff base platinum cyclooctadiene preparation catalyst; bulky Schiff base anchored mesoporous SBA 15 catalyst hydrosilylation; hydrosilylation terminal alkene styrene silane regioselectivity catalyst preparation.Formula: C8H12Cl2Pt.

Reported herein is an easy-to-prepare novel heterogeneous catalyst of platinum complexes bearing binary ligands of bidentate naphthalenolimine and cyclo-1,5-octadiene that are anchored onto mesoporous silica SBA-15. The presence of the binary ligands not only stabilized the platinum, but also enabled the platinum atoms to form nanoclusters with diameters of ca 1 nm, and led to high platinum loading (8.69 wt%). Moreover, the platinum catalyst exhibited high catalytic activity towards hydrosilylation of terminal alkenes and styrene with silanes under mild and solvent-free conditions, with excellent regioselectivity.

Although many compounds look similar to this compound(12080-32-9)Formula: C8H12Cl2Pt, numerous studies have shown that this compound(SMILES:C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts