Sources of common compounds: 3-Amino-2-benzylpropan-1-ol

With the rapid development of chemical substances, we look forward to future research findings about 66102-69-0.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 66102-69-0, name is 3-Amino-2-benzylpropan-1-ol. This compound has unique chemical properties. The synthetic route is as follows. Computed Properties of C10H15NO

Preparation of 3-amino-2-benzyl-1-propanesulfonic acid (Compound N4); To a cold (-78 C.) solution of 3-hydroxypropionitrile (1 g, 14.06 mmol) in THF (30 mL), was added a solution of lithium bis(trimethylsilyl)amide (1 M in THF, 28 mL). After the reaction mixture was stirred for 1 h at -78 C., benzyl bromide (1.67 mL, 14.06 mmol) was added dropwise and the reaction mixture was warmed to reach 0 C. at which temperature the mixture was stirred overnight. The reaction was quenched with 1N HCl and extracted with EtOAc. The organic layer was washed with 1N HCl, dried over Na2SO4 and concentrated. The residue was applied on silica gel column (eluant:Hexanes:EtOAc 70:30 to 50:50) to afford 1.3 g (69%) of the 2-benzyl-3-hydroxypropionitrile. 1H NMR (300 MHz, CDCl3) delta 2.80 (bs, 1H), 2.95 (m, 3H), 3.77 (m, 2H), 7.20-7.35 (m, 5H); 13C NMR (125 MHz, CDCl3) delta 34.71, 37.03, 61.98, 120.78, 127.58, 129.06, 129.25, 136.71. The dialkylated product was isolated in 8.5% yield. To a solution of 2-benzyl-3-hydroxypropionitrile (obtained in step 1, 3 g, 24.75 mmol) in EtOH (60 mL) was added an aqueous solution of NH4OH (30%, 20 mL), followed by Ra-Ni (3 g). The suspension was stirred under atmosphere H2 pressure for 15 hours and then filtered. The filtrate was concentrated under high vacuum; and the residual product (3-1mino-2-benzyl-1-propanol) was used in the next step without purification. A solution of the crude 3-amino-2-benzyl-1-propanol (4.5 g, 27.23 mmol) in anhydrous CHCl3 (24 mL) was saturated with HCl (g), and then SOCl2 (5.2 mL, 71.0 mmol) was added dropwise at reflux. The reaction was maintained under reflux for an additional 2 hours. The reaction was then concentrated to yield a syrupy product. The crude 3-chloro-2-benzyl-1-propylamine thus obtained was used in the next step without further purification. A solution of the crude 3-chloro-2-benzyl-1-propylamine (obtained in step 3) in water (10 mL) was added dropwise to a solution of Na2SO3 (6.8 g, 54.46 mmol) in water (25 mL) under reflux. After the end of the addition, the reaction was stirred at reflux for 1 hour, then cooled down and concentrated under reduced pressure. HCl (conc. 16 mL) were added to dissolve the aminosulfonic acid and precipitate the inorganic salts which were removed by filtration. The filtrate was concentrated; and ethanol was added. The title amino sulfonic acid was precipitated as white solid which was collected by filtration, washed with EtOH and Et2O, then dried under high vacuum to give a white solid (1.87 g, 30% yield over three steps). 1H NMR (500 MHz, D2O) delta 2.52 (m, 1H), 2.8 (m, 2H), 2.94 (m, 2H), 3.08 & 3.18 (ABX, J=13.0 & 7.0 Hz, 2H), 7.25-7.37 (m, 5H). 13C NMR (125 MHz, D2O) delta 35.47, 37.78, 42.67, 52.55, 127.15, 129.09, 129.54, 138.32. ES-MS 228 (M-1).

With the rapid development of chemical substances, we look forward to future research findings about 66102-69-0.

Reference:
Patent; Neurochem (International) Limited; US2006/223855; (2006); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts