Application of 1805-32-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1805-32-9, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 1805-32-9, 3,4-Dichlorobenzyl alcohol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 1805-32-9, blongs to alcohols-buliding-blocks compound. category: alcohols-buliding-blocks

Preparation of Examples 6-18 – 6-22 Preparation of 3,4-dichlorobenzyl 2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2- yl)ethylcarbamate (6-22)A solution of carbonyl diimidazole (53 mg, 0.30 mmol) in anhydrous methylene chloride (1 mL) was added slowly to a solution of 3,4-dichlorobenzyl alcohol (49 mg, 0.30 mmol) in anhydrous methylene chloride (1 mL) at 0 C under nitrogen. The mixture was warmed to room temperature after which a suspension of 2- (5,6,7,8-tetrahydro-1 ,8-naphthyridin-2-yl)ethanamine hydrochloride (64 mg, 0.30 mmol) and resin-bound diisopropylethylamine (225 mg, 0.90 mmol) in anhydrous methylene chloride (2 mL) was added. The mixture was stirred for 2 h after which the solids were removed by filtration and the solvents were removed from the filtrate under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with methanol/methylene chloride (1 :19), to provide 3,4-dichlorobenzyl 2-(5,6,7,8-tetrahydro-1 ,8- naphthyridin-2-yl)ethylcarbamate (39 mg, 34%) as a white solid: 1H NMR (300 MHz, CDCI3) delta 7.48-7.38 (m, 2H), 7.17 (d, 1H), 7.07 (d, 1H), 6.34 (d, 1H), 5.65 (br s, 1 H), 5.06 (S1 2H), 4.78 (br s, 1 H), 3.57-3.45 (m, 2H), 3.45-3.36 (m, 2H), 2.78-2.65 (m, 4H), 1.97-1.86 (m, 2H) ppm; ESI MS m/z 380 .

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1805-32-9, its application will become more common.

Reference:
Patent; SCHERING CORPORATION; SHIPPS, Gerald, W., Jr.; CHENG, Cliff, C.; ACHAB, Abdelghani, Abe; YAO, Zhiping; WHITEHURST, Charles, E.; ZHANG, Mingxuan; YANG, Xianshu; HERR, Robert, Jason; ZYCH, Andrew, John; ROY, Sudipta; YANG, Jinhai; WO2010/57101; (2010); A2;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts