Analyzing the synthesis route of 2-(Allyloxy)ethanol

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 111-45-5, 2-(Allyloxy)ethanol, other downstream synthetic routes, hurry up and to see.

Application of 111-45-5 ,Some common heterocyclic compound, 111-45-5, molecular formula is C5H10O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: The designated donor (i.e. 19, 0.025 mmol) and the acceptor (2-2.5eq.) were dissolved in dry DCM (2-3 mL) under N2 in presence of freshly activated 4 A molecular sieves. The mixture was stirred for 1-1.5 h at rt and then cooled to -20 C. TMSOTf (0.5-1.0 eq.~10muL neat, or as a solution of 50 muL dissolved in 0.5 mL DCM) was added to the reaction and the mixture was allowed to warm to rt over a period of 2h. Upon completion, as monitored by TLC, the reaction was neutralized by adding TEA (50 muL) and filtered. The solvent was removed under reduced pressure and the crude material was purified by column chromatography using 4:1 Hex:EtOAc as eluent to obtain the product glycosides

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 111-45-5, 2-(Allyloxy)ethanol, other downstream synthetic routes, hurry up and to see.

Reference:
Article; Saha, Jaideep; Peczuh, Mark W.; Tetrahedron Letters; vol. 53; 42; (2012); p. 5667 – 5670;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts