Godlewski, Grzegorz et al. published their research in Cell Metabolism in 2019 |CAS: 32462-30-9

The Article related to behavior role: bsu (biological study, unclassified), biol (biological study), body weight role: bsu (biological study, unclassified), biol (biological study), signal transduction role: bsu (biological study, unclassified), biol (biological study), 尾-oxidation role: bsu (biological study, unclassified), biol (biological study), and other aspects.Safety of H-Phg(4-OH)-OH

On June 4, 2019, Godlewski, Grzegorz; Cinar, Resat; Coffey, Nathan J.; Liu, Jie; Jourdan, Tony; Mukhopadhyay, Bani; Chedester, Lee; Liu, Ziyi; Osei-Hyiaman, Douglas; Iyer, Malliga R.; Park, Joshua K.; Smith, Roy G.; Iwakura, Hiroshi; Kunos, George published an article.Safety of H-Phg(4-OH)-OH The title of the article was Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis. And the article contained the following:

Endocannabinoids acting on the cannabinoid-1 receptor (CB1R) or ghrelin acting on its receptor (GHS-R1A) both promote alc.-seeking behavior, but an interaction between the two signaling systems has not been explored. Here, we report that the peripheral CB1R inverse agonist JD5037 reduces ethanol drinking in wild-type mice but not in mice lacking CB1R, ghrelin peptide or GHS-R1A. JD5037 treatment of alc.-drinking mice inhibits the formation of biol. active octanoyl-ghrelin without affecting its inactive precursor desacyl-ghrelin. In ghrelin-producing stomach cells, JD5037 reduced the level of the substrate octanoyl-carnitine generated from palmitoyl-carnitine by increasing fatty acid 尾-oxidation Blocking gastric vagal afferents abrogated the ability of either CB1R or GHS-R1A blockade to reduce ethanol drinking. We conclude that blocking CB1R in ghrelin-producing cells reduces alc. drinking by inhibiting the formation of active ghrelin and its signaling via gastric vagal afferents. Thus, peripheral CB1R blockade may have therapeutic potential in the treatment of alcoholism. The experimental process involved the reaction of H-Phg(4-OH)-OH(cas: 32462-30-9).Safety of H-Phg(4-OH)-OH

The Article related to behavior role: bsu (biological study, unclassified), biol (biological study), body weight role: bsu (biological study, unclassified), biol (biological study), signal transduction role: bsu (biological study, unclassified), biol (biological study), 尾-oxidation role: bsu (biological study, unclassified), biol (biological study), and other aspects.Safety of H-Phg(4-OH)-OH

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts