Zhao, Mengliu team published research in Food & Function in 2022 | 527-07-1

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Zhao, Mengliu;Cui, Wenxin;Hu, Xinzhong;Ma, Zhen research published 《 Anti-hyperlipidemic and ameliorative effects of chickpea starch and resistant starch in mice with high fat diet induced obesity are associated with their multi-scale structural characteristics》, the research content is summarized as follows. Chickpea starches were isolated from both untreated (UC-S) and conventionally cooked seeds (CC-S), and their multi-scale structural characteristics and in vivo physiol. effects on controlling hyperlipidemia in high fat diet induced obese mice were compared with their corresponding resistant starch (RS) fractions obtained by an in vitro enzymic isolation method (UC-RS and CC-RS). The degree of order/degree of double helix in Fourier transform IR spectroscopy was in the following order: CC-RS > UC-RS > CC-S > UC-S, which was consistent with the trend observed for relative crystallinity and double helix contents monitored by X-ray diffractometer and solid-state 13C cross-polarization and magic angle spinning NMR analyses. The influence of different types of chickpea starch and their corresponding resistant starch fractions on regulating the serum lipid profile, antioxidant status, and histopathol. changes in liver, colon and cecal tissues, and gene expressions associated with lipid metabolism, gut microbiota, as well as short-chain fatty acid metabolites in mice with high fat diet induced obesity was investigated. The results showed that the chickpea RS diet group exhibited overall better anti-hyperlipidemic and ameliorative effects than those of the starch group, and such effects were most pronounced in the CC-RS intervention group. After a six-week period of administration with chickpea starch and RS diets, mice in the UC-RS and CC-RS groups tended to have relatively significantly higher levels (P < 0.05) of butyric acid in their fecal contents. The 16S rRNA sequencing results revealed that mice fed with CC-RS showed the greatest abundance of Akkermansia and Lactobacillus compared with the other groups.

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts