Changes of bacterial communities and volatile compounds developed from the spoilage of white Hypsizygus marmoreus under different storage conditions was written by Yuan, Yu-Han;Liu, Ling-Xiao;Guo, Li;Wang, Liang;Hao, Ji-Wei;Liu, Yun-Guo. And the article was included in LWT–Food Science and Technology in 2022.Related Products of 3391-86-4 This article mentions the following:
The succession of bacterial communities and changes of volatile components throughout the storage of white Hypsizygus marmoreus (white H.marmoreus) were investigated. The results showed that the microbial communities were mainly composed of Proteobacteria and Firmicutes at 4°C and 25°C, with Serratia, Pediococcus, Enterococcus, Pseudomonas and Stenotrophomonas as the dominant genera. Serratia could be detected during the whole period of storage, and the relative abundance increased with increasing time. It indicated that Serratia might be one of the main spoilage bacteria for white H.marmoreus spoilage. Pseudomonas and Stenotrophomonas had a sharp increasing trend during the late storage period, indicating they might be a potential factor for spoilage. The volatile components of white H.marmoreus were mainly composed of ketones, aldehydes, alcs. and esters, among which 3-octanone was the main component. Correlation anal. showed that Serratia was neg. correlated with 16 volatile compounds, and also suggested that Serratia might play an important role in inhibiting the production of 16 volatile compounds The results would provide a theor. basis for studying the microbial dynamics and the changes of volatile compounds of white H.marmoreus during storage to control the spoilage of edible fungi. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Related Products of 3391-86-4).
Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 3391-86-4
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts