Phong, Win Nee et al. published their research in Journal of Food Science in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Quality Control of Oct-1-en-3-ol

Comparative evaluation of encapsulation using β-cyclodextrin versus freeze-drying for better retention and stabilizing of black Perigord truffle (Tuber melanosporum) aroma was written by Phong, Win Nee;Al-Salami, Hani;Gibberd, Mark R.;Dykes, Gary A.;Payne, Alan D.;Coorey, Ranil. And the article was included in Journal of Food Science in 2022.Quality Control of Oct-1-en-3-ol This article mentions the following:

This study aimed to develop a novel technique to retain and stabilize compounds contributing to truffle aroma by encapsulation using β-cyclodextrin. Two experiments were conducted. In the first experiment, the key volatile profile and microbial population of products resulting from three different encapsulation methods, namely direct mixing method (M1), direct mixing followed by ethanol addition method (M2), and paste method (M3), were compared with untreated truffles (pos. control) over a 90-day period. The M2-derived product was the least optimal for retaining key volatile compounds despite showing the lowest microbial population. There was no significant difference in the volatile profile of products derived from M1 and M3 on day 0. However, it was observed that the M3-derived product could retain its volatile profile better than the M1-derived product by day 90. M3 was compared with freeze-drying in the second experiment Freeze-dried truffles showed an overall higher relative percentage of volatiles than the M3-derived product on day 0. However, by day 90, some volatile changes occurred in the freeze-dried truffles but not in the M3-derived product. The findings indicate that while freeze-drying could adequately conserve truffle volatiles, the encapsulation of volatile compounds in β-cyclodextrin could improve the volatile stability of truffle products and allow for longer storage times. Microbes were found in all encapsulated truffle products and freeze-dried truffles on days 0 and 90, suggesting the need to explore the possibility of incorporating a decontamination step in the process prior to either encapsulation or freeze-drying. Practical Application : A technique to capture and stabilize compounds responsible for truffle aroma by encapsulation using β-cyclodextrin was developed and compared with freeze-drying in this study. The overall finding suggests that while freeze-drying of truffle could sufficiently preserve volatiles, encapsulating truffle volatiles with β-cyclodextrin may improve its stability, extending its shelf life, which can be applied in the development of a natural truffle ingredient that can be applied in food product development. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Quality Control of Oct-1-en-3-ol).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Quality Control of Oct-1-en-3-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts