On June 4, 2020, Kap, Oezlem; Kabanov, Nikolai; Tsvetanova, Martina; Varlikli, Canan; Klavsyuk, Andrey L.; Zandvliet, Harold J. W.; Sotthewes, Kai published an article.Product Details of 143-10-2 The title of the article was Structural Stability of Physisorbed Air-Oxidized Decanethiols on Au(111). And the article contained the following:
We have studied the dynamic behavior of decanethiol and air-oxidized decanethiol self-assembled monolayers (SAMs) on Au(111) using time-resolved scanning tunneling microscopy at room temperature The air-oxidized decanethiols arrange in a lamellae-like structure leaving the herringbone reconstruction of the Au(111) surface intact, indicating a rather weak interaction between the mols. and the surface. Successive STM images show that the air-oxidized mols. are structurally more stable as compared to the nonoxidized decanethiol mols. This is further confirmed by performing current-time traces with the feedback loop disabled at different locations and at different mol. phases. D. function theory calculations reveal that the diffusion barrier of the physisorbed oxidized decanethiol mol. on Au(111) is about 100 meV higher than the diffusion barrier of a chemisorbed Au-decanethiol complex on Au(111). A two-dimensional activity map of individual current-time traces performed on the air-oxidized decanethiol phase reveals that all the dynamic events take place within the vacancy lines between the air-oxidized decanethiols. These results reveal that the oxidation of thiols provides a pathway to produce more robust and stable self-assembled monolayers at ambient conditions. The experimental process involved the reaction of 1-Decanethiol(cas: 143-10-2).Product Details of 143-10-2
The Article related to decanethiol gold stability surface oxidation self assembly monolayer, Surface Chemistry and Colloids: Solid-Gas Systems and other aspects.Product Details of 143-10-2
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts