With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Application of C6H6O3
Ke, Zhuang;Lan, Minjian;Yang, Tunan;Jia, Weibin;Gou, Zhenjiu;Chen, Kai;Jiang, Jiandong research published 《 A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22-1》, the research content is summarized as follows. The environmental fates of chlorinated 4-nitrophenols, 2,6-dichloro-4-nitrophenol (2,6-DCNP) and 2-chloro-4-nitrophenol (2C4NP), mediated via microbial catabolism have attracted great attention due to their high toxicity and persistence in the environment. In this study, a strain of Ensifer sp. 22-1 that was capable of degrading both 2,6-DCNP and 2C4NP was isolated from a halogenated aromatic-contaminated soil sample. A gene cluster cnpBADCERM was predicted to be involved in the catabolism of 2,6-DCNP and 2C4NP based on genome sequence anal. A two-component monooxygenase CnpAB, composed of an oxygenase component (CnpA) and a reductase component (CnpB), was confirmed to catalyze the continuous denitration and dechlorination of 2,6-DCNP and 2C4NP to 6-chlorohydroxyquinol (6-CHQ) and hydroxyquinol (HQ), resp. Knockout of cnpA resulted in the complete loss of the capacity for strain 22-1 to degrade 2,6-DCNP and 2C4NP. Homologous modeling and docking showed that Val155∼Ala159, Phe206∼Pro209 and Phe446∼Arg461 of CnpA participated in the formation of the FAD-binding pocket, and Arg101, Val155 and Asn447 formed hydrogen bonds with 2,6-DCNP/2C4NP in the substrate-binding pocket. This work characterized a new two-component monooxygenase for 2,6-DCNP and 2C4NP, and enriched our understanding of the degradation mechanism of chlorinated nitrophenols (CNPs) by microorganisms.
533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Application of C6H6O3
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts