Wang, Huai-Wei et al. published their research in Organic Letters in 2021 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

RhIII-Catalyzed C-H (Het)arylation/Vinylation of N-2,6-Difluoroaryl Acrylamides was written by Wang, Huai-Wei;Qiao, Yu-Han;Wu, Jia-Xue;Wang, Qiu-Ping;Tian, Meng-Xin;Li, Yong-Fei;Yao, Qing-Xia;Li, Da-Cheng;Dou, Jian-Min;Lu, Yi. And the article was included in Organic Letters in 2021.Safety of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane This article mentions the following:

RhIII-catalyzed sp2 C-H cross-coupling of acrylamides with organoboron reactants was accomplished using a com.available N-2,6-difluoroaryl acrylamide auxiliary. A broad range of aryl and vinyl boronates as well as a variety of heterocyclic boronates with strong coordinating ability served as the coupling partners. This transformation proceeded under moderate reaction conditions with excellent functional group tolerance and high regioselectivity. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Safety of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts