Catalytic β C-H amination via an imidate radical relay was written by Stateman, Leah M.;Wappes, Ethan A.;Nakafuku, Kohki M.;Edwards, Kara M.;Nagib, David A.. And the article was included in Chemical Science in 2019.COA of Formula: C9H9F3O This article mentions the following:
The first catalytic strategy to harness imidate radicals for C-H functionalization has been developed. This iodine-catalyzed approach enables β C-H amination of alcs. e.g., 4-trichloroacetamidyl cholesterol by an imidate-mediated radical relay. In contrast to the first-generation, (super)stoichiometric protocol, this catalytic method enables faster and more efficient reactivity. Furthermore, lower oxidant concentration affords broader functional group tolerance, including alkenes (6-methyl-5-hepten-2-one, 3,7-dimethyl-2,6-octadienol), alkynes (isonicotinonitrile), alcs.(1-octanol), carbonyls (Me 2-(([(4-nitrobenzene)sulfonyl]oxy)amino)-3-phenylpropanoate) and heteroarenes (quinoline, benzofuran, benzo[b]thiophene, etc.). Mechanistic experiments interrogating the electronic nature of the key 1,5 H-atom transfer event are included, as well as probes for chemo-, regio-, and stereo-selectivity. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6COA of Formula: C9H9F3O).
2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H9F3O
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts