Liao, Kuan-Yu et al. published their research in Inorganic Chemistry in 2015 | CAS: 49669-14-9

2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (cas: 49669-14-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Recommanded Product: 2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine

Pt(II) Metal Complexes Tailored with a Newly Designed Spiro-Arranged Tetradentate Ligand; Harnessing of Charge-Transfer Phosphorescence and Fabrication of Sky Blue and White OLEDs was written by Liao, Kuan-Yu;Hsu, Che-Wei;Chi, Yun;Hsu, Ming-Kuan;Wu, Szu-Wei;Chang, Chih-Hao;Liu, Shih-Hung;Lee, Gene-Hsiang;Chou, Pi-Tai;Hu, Yue;Robertson, Neil. And the article was included in Inorganic Chemistry in 2015.Recommanded Product: 2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine This article mentions the following:

Tetradentate bis(pyridyl azolate) chelates are assembled by connecting two bidentate 3-trifluoromethyl-5-(2-pyridyl)azoles at the six position of pyridyl fragment with the tailored spiro-arranged fluorene and/or acridine functionalities. These new chelates were then utilized in synthesizing a series of Pt(II) metal complexes [Pt(Ln)], n = 1-5, from resp. chelates L1-L5 and [PtCl2(DMSO)2] in 1,2-dimethoxyethane. The single-crystal X-ray structural analyses were executed on 1, 3, and 5 to reveal the generalized structures and packing arrangement in crystal lattices. Their photophys. properties were measured in both solution and solid state and are discussed in the context of computational anal. These L1-L5 coordinated Pt(II) species exhibit intense emission, among which complex 5 shows remarkable solvatochromic phosphorescence due to the dominant intraligand charge transfer transition induced by the new bis(pyridyl azolate) chelates. Moreover, because of the higher-lying HOMO of acridine, complex 5 can be considered as a novel bipolar phosphor. Successful fabrication of blue and white organic light-emitting diodes (OLEDs) using Pt(II) complexes 3 and 5 as the phosphorescent dopants are reported. In particular, blue OLEDs with 5 demonstrated peak efficiencies of 15.3% (36.3 cd/A, 38.0 lm/W), and CIE values of (0.190, 0.342) in a double-emitting layer structure. Furthermore, a red-emitting Os(II) complex and 5 were used to fabricate warm-white OLEDs to achieve peak external quantum efficiency, luminance efficiency, and power efficiency values as high as 12.7%, 22.5 cd/A, and 22.1 lm/W, resp. In the experiment, the researchers used many compounds, for example, 2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (cas: 49669-14-9Recommanded Product: 2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine).

2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (cas: 49669-14-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Recommanded Product: 2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts