Eisele, Pascal et al. published their research in Chemistry – A European Journal in 2019 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Related Products of 68716-49-4

Mild, Selective Ru-Catalyzed Deuteration Using D2O as a Deuterium Source was written by Eisele, Pascal;Ullwer, Franziska;Scholz, Sven;Plietker, Bernd. And the article was included in Chemistry – A European Journal in 2019.Related Products of 68716-49-4 This article mentions the following:

A method for the selective deuteration of polyfunctional organic mols. using catalytic amounts of [RuCl2(PPh3)3] and D2O as a deuterium source is presented. Through variation of additives like CuI, KOH, and various amounts of zinc powder, orthogonal chemoselectivities in the deuteration process were observed Mechanistic investigation indicated the presence of different, defined Ru-complexes under the given specific conditions. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Related Products of 68716-49-4).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Related Products of 68716-49-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts