Catalytic β C-H amination via an imidate radical relay was written by Stateman, Leah M.;Wappes, Ethan A.;Nakafuku, Kohki M.;Edwards, Kara M.;Nagib, David A.. And the article was included in Chemical Science in 2019.SDS of cas: 94022-96-5 This article mentions the following:
The first catalytic strategy to harness imidate radicals for C-H functionalization has been developed. This iodine-catalyzed approach enables β C-H amination of alcs. e.g., 4-trichloroacetamidyl cholesterol by an imidate-mediated radical relay. In contrast to the first-generation, (super)stoichiometric protocol, this catalytic method enables faster and more efficient reactivity. Furthermore, lower oxidant concentration affords broader functional group tolerance, including alkenes (6-methyl-5-hepten-2-one, 3,7-dimethyl-2,6-octadienol), alkynes (isonicotinonitrile), alcs.(1-octanol), carbonyls (Me 2-(([(4-nitrobenzene)sulfonyl]oxy)amino)-3-phenylpropanoate) and heteroarenes (quinoline, benzofuran, benzo[b]thiophene, etc.). Mechanistic experiments interrogating the electronic nature of the key 1,5 H-atom transfer event are included, as well as probes for chemo-, regio-, and stereo-selectivity. In the experiment, the researchers used many compounds, for example, 2-(Trifluoromethyl)phenethyl alcohol (cas: 94022-96-5SDS of cas: 94022-96-5).
2-(Trifluoromethyl)phenethyl alcohol (cas: 94022-96-5) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 94022-96-5
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts