Aerobic Oxidation of Alcohols Catalyzed by in Situ Generated Gold Nanoparticles inside the Channels of Periodic Mesoporous Organosilica with Ionic Liquid Framework was written by Karimi, Babak;Bigdeli, Akram;Safari, Ali Asghar;Khorasani, Mojtaba;Vali, Hojatollah;Khodadadi Karimvand, Somaiyeh. And the article was included in ACS Combinatorial Science in 2020.Safety of (2,4-Dichlorophenyl)methanol This article mentions the following:
In situ generated gold nanoparticles inside the nanospaces of periodic mesoporous organosilica with an imidazolium framework (Au@PMO-IL) were found to be highly active, selective, and reusable catalysts for the aerobic oxidation of activated and nonactivated alcs. under mild reaction conditions. The catalyst was characterized by nitrogen adsorption-desorption measurement, thermogravimetric anal. (TGA), transmission electron microscopy (TEM), elemental anal. (EA), diffuse reflectance IR Fourier transform spectroscopy (DRIFT), XPS, and inductively coupled plasma at. emission spectroscopy (ICP-AES). The catalyst exhibited excellent catalytic activity in the presence of either Cs2CO3 (35°) or K2CO3 (60°) as reaction bases in toluene as a reaction solvent. Under both reaction conditions, various types of alcs. (up to 35 examples) including activated benzylic, primary and secondary aliphatic, heterocyclic, and challenging cyclic aliphatic alcs. converted to the expected carbonyl compounds in good to excellent yields and selectivity. The catalyst was also recovered and reused for at least seven reaction cycles. Data from three independent leaching tests indicated that amounts of leached gold particles were negligible (<0.2 ppm). It is believed that the combination of bridged imidazolium groups and confined nanospaces of PMO-IL might be a major reason explaining the remarkable stabilization and homogeneous distribution of in situ generated gold nanoparticles, thus resulting in the highly active and recyclable catalyst system. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Safety of (2,4-Dichlorophenyl)methanol).
(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of (2,4-Dichlorophenyl)methanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts