Highly efficient synthesis of pharmaceutically relevant chiral 3-N-substituted-azacyclic alcohols using two enantiocomplementary short chain dehydrogenases was written by Yang, Lin;Zhang, Yiping;Liu, Yan;Wang, Hualei;Wei, Dongzhi. And the article was included in Biochemical Engineering Journal in 2022.Quality Control of (S)-1-(2-Fluorophenyl)ethanol This article mentions the following:
Two stereocomplementary alc. dehydrogenases from Flavobacterium psychrophilum (FpADH) and Flavobacterium sp. was reported. (FsADH), which showed the potential industrial application in highly efficient synthesis of a series of enantiomerically pure 3-N-substituted-azacyclic alochols. Both the enzymes showed high catalytic activity toward the model substrate N-Boc-4-piperidone (NBPO) and presented a strict enantioselectivity for the corresponding alc. products. In addition, both enzymes showed broad substrate scope, including ketoesters, acryl ketones and heterocyclic ketones. Using glucose dehydrogenase coexpressed with each of the enzymes to realize the efficient coenzyme recycling, various pharmaceutically relevant chiral 3-N-Boc azacyclic alcs. were asym. synthesized at high substrate concentrations (343.7-643.8 g/L) and low equilvelent of NADP+ (0.1 mM) with excellent enantioselectivity (> 99.5% e.e), which have met the requirements of biocatalytic processes in the industry and demonstrated the feasibility of FpADH and FsADH for industrial application in the biotransformation of chiral 3-N-substituted-azacyclic alcs. The mol. basis of the enantioselectivity and catalytic efficiency of both enzymes were revealed the by mol. docking and MD simulation anal. In the experiment, the researchers used many compounds, for example, (S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4Quality Control of (S)-1-(2-Fluorophenyl)ethanol).
(S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Quality Control of (S)-1-(2-Fluorophenyl)ethanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts