In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. SDS of cas: 141699-55-0
Tian, Xianhai;Kaur, Jaspreet;Yakubov, Shahboz;Barham, Joshua P. research published 《 α-Amino Radical Halogen Atom Transfer Agents for Metallaphotoredox-Catalyzed Cross-Electrophile Couplings of Distinct Organic Halides》, the research content is summarized as follows. α-Amino radicals from simple tertiary amines were employed as halogen atom transfer (XAT) agents in metallaphotoredox catalysis for cross-electrophile couplings of organic bromides with organic iodides. This XAT strategy proved to be efficient for the generation of carbon radicals from a range of partners (alkyl, aryl, alkenyl, and alkynyl iodides). The reactivities of these radical intermediates were captured by nickel catalysis with organobromides including aryl, heteroaryl, alkenyl, and alkyl bromides, enabling six diverse C-C bond formations. Classic named reactions including Negishi, Suzuki, Heck, and Sonogashira reactions were readily achieved in a net-reductive fashion under mild conditions. More importantly, the cross coupling was viable with either organic bromide or iodide as limiting reactant based on the availability of substrates, which is beneficial to the late-stage functionalization of complex mols. The scalability of this method in batch and flow was investigated, further demonstrating its applicability.
SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.
Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts