New Advances in Chemical Research in 2021.-Compound 24034-73-9

Synthetic Route of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Synthetic Route of 24034-73-9, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 24034-73-9, name is (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Age-Dependent Decrease in Hepatic Geranylgeranoic Acid Content in C3H/HeN Mice and Its Oral Supplementation Prevents Spontaneous Hepatoma
Geranylgeranoic acid (GGA) has been developed as a preventive agent against second primary hepatoma. Recently, GGA was reported to induce cell death in human hepatoma cells via TLR4-mediated pyroptosis. We have reported that GGA is enzymically biosynthesized from mevalonic acid in human hepatoma-derived cells and that endogenous GGA is found in most organs of rats. In addition, we found that upregulation of endogenous GGA levels by zaragozic acid A (ZAA) induced cell death in human hepatoma-derived cells. Therefore, we investigated the age-related changes in hepatic GGA and the possibility of suppressing hepatocarcinogenesis by GGA supplementation using male C3H/HeN mice that spontaneously develop hepatoma. We measured endogenous GGA and mRNA of monoamine oxidase (BMAOB), a key enzyme of GGA biosynthesis, in the liver of male C3H/HeN mice aged 6-93 wk. We also tried suppressing spontaneous hepatocarcinogenesis by a single administration of GGA to C3H/HeN mice. Hepatic GGA content and Maob mRNA expression level age-dependently decreased in male C3H/HeN mice; some of which produced spontaneous hepatoma in 2 years. A single oral administration of GGA at 11 mo of age significantly prevented hepatoma in terms of the number and weight of tumors per mouse at 24 mo. Oral supplementation with GGA or geranylgeraniol significantly increased endogenous hepatic GGA contents dose-dependently; and ZAA dramatically upregulated hepatic GGA. In this study; we found an age-dependent decrease in hepatic endogenous GGA in male C3H/HeN mice and efficient prevention of spontaneous hepatoma by a single administration of GGA at 11 mo of age.

Synthetic Route of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The new and interesting world of chemistry: the extended application of 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Computed Properties of 647-42-7

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 647-42-7

Targeted Single-Cell RNA and DNA Sequencing With Fluorescence-Activated Droplet Merger
Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the anal. and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to phys. isolate subsets of interest prior to anal.; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymic reactions without having to phys. isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biol., combinatorial chem. synthesis, and drug screening.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Computed Properties of 647-42-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Get Up to Speed Quickly on Emerging Topics: 16545-68-9

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Safety of MFCD19707103

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of MFCD19707103

Structural Insights into Incorporation of Norbornene Amino Acids for Click Modification of Proteins
By using a Methanosarcina mazei pyrrolysine synthetase (PylRS) triple mutant (Y306G, Y384F, I405R) the incorporation of two new exo-norbornene-containing pyrrolysine analogs was achieved. X-ray crystallog. anal. led to the identification of the crucial structural elements involved in substrate recognition by the evolved synthetase.

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Safety of MFCD19707103

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 438630-64-9

Although many compounds look similar to this compound(438630-64-9)Category: alcohols-buliding-blocks, numerous studies have shown that this compound(SMILES:ClS(=O)(=O)C1=CNN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Category: alcohols-buliding-blocks. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 1H-Pyrazole-4-sulfonyl chloride, is researched, Molecular C3H3ClN2O2S, CAS is 438630-64-9, about Potent and Selective Nonpeptidic Inhibitors of Procollagen C-Proteinase.

6-Cyclohexyl-N-hydroxy-3-(1,2,4-oxadiazol-5-yl)hexanamides were previously disclosed as inhibitors of procollagen C-proteinase (PCP) culminating in the identification of amide 1. The objective was to discover a second inhibitor that would have improved affinity for PCP and to optimize properties for transepidermal delivery (TED) to intact skin. Further investigation of this template identified a number of potent PCP inhibitors (IC50 values of 2-6 nM) with improved TED flux. Sulfonamide (I) had excellent PCP enzyme activity when measured with a peptide substrate (Ki 8.7 nM) or with the endogenous substrate procollagen (IC50 3.4 nM) and demonstrates excellent selectivity over MMPs involved in wound healing (>10 000-fold). In the fibroplasia model, I inhibited deposition of insoluble collagen by 76±2% at 10 μM and was very effective at penetrating human skin in vitro with a TED flux of 1.5 μg/cm2/h, which compares favorably with values for agents that are known to penetrate skin well in vivo. Based on this profile, I (UK-421,045) was selected as a candidate for further preclin. evaluation as a topically applied, dermal antiscarring agent.

Although many compounds look similar to this compound(438630-64-9)Category: alcohols-buliding-blocks, numerous studies have shown that this compound(SMILES:ClS(=O)(=O)C1=CNN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Can You Really Do Chemisty Experiments About 1195-58-0

Although many compounds look similar to this compound(1195-58-0)Synthetic Route of C7H3N3, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Zhang, Xingjie; Xia, Aiyou; Chen, Haoyi; Liu, Yuanhong researched the compound: Pyridine-3,5-dicarbonitrile( cas:1195-58-0 ).Synthetic Route of C7H3N3.They published the article 《General and Mild Nickel-Catalyzed Cyanation of Aryl/Heteroaryl Chlorides with Zn(CN)2: Key Roles of DMAP》 about this compound( cas:1195-58-0 ) in Organic Letters. Keywords: aryl halide zinc cyanide nickel DMAP; cyanoarene preparation; heteroaryl halide zinc cyanide nickel DMAP; cyanoheteroarene preparation; nickel cyanation catalyst; DMAP cyanation mediator. We’ll tell you more about this compound (cas:1195-58-0).

A new and general nickel-catalyzed cyanation of hetero(aryl) chlorides using less toxic Zn(CN)2 as the cyanide source has been developed. The reaction relies on the use of inexpensive NiCl2·6H2O/dppf/Zn as the catalytic system and DMAP as the additive, allowing the cyanation to occur under mild reaction conditions (50-80 °C) with wide functional group tolerance. DMAP was found to be crucial for successful transformation, and the reaction likely proceeds via a Ni(0)/Ni(II) catalysis based on mechanistic studies. The method was also successfully extended to aryl bromides and aryl iodides.

Although many compounds look similar to this compound(1195-58-0)Synthetic Route of C7H3N3, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The important role of 1195-58-0

Although many compounds look similar to this compound(1195-58-0)Related Products of 1195-58-0, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Dihydropyridines. XII. Electronic structure and reactivity of monocyanopyridines and symmetric dicyanopyridines》. Authors are Kuthan, J..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).Related Products of 1195-58-0. Through the article, more information about this compound (cas:1195-58-0) is conveyed.

cf. CA 65, 3828a. The electronic structure of 2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, 2,6-dicyanopyridine, and 3,5-dicyanopyridine were studied by means of the simple mol. orbital theory (HMO). The reactivity of these compounds toward nucleophilic reagents is discussed with respect to possible formation of corresponding dihydro derivatives or products with transformed functional groups. Ir, N.M.R., and uv spectra of the compounds studied are compared with the calculated values for the bond orders, π-electron densities, and with the theoretical excitation energies. Bond orders and π-electron densities as calculated on the basis of HMO-approximation are correlated with analogous data obtained by the self-consistent-field method.

Although many compounds look similar to this compound(1195-58-0)Related Products of 1195-58-0, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 12080-32-9

Although many compounds look similar to this compound(12080-32-9)Quality Control of Dichloro(1,5-cyclooctadiene)platinum(II), numerous studies have shown that this compound(SMILES:C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Synthesis, Coordination and Electrochemistry of a Ferrocenyl-Tagged Aminobisphosphane Ligand, published in 2021-09-24, which mentions a compound: 12080-32-9, Name is Dichloro(1,5-cyclooctadiene)platinum(II), Molecular C8H12Cl2Pt, Quality Control of Dichloro(1,5-cyclooctadiene)platinum(II).

Group 10 element diphosphine square planar complexes [FcN(CH2PPh2)2MY2] (Fc = ferrocenyl; M = Ni, Pd, Pt; Y = Cl, Br), Group 11 tetraphosphine tetrahedral complexes [[FcN(CH2PPh2)2]2M]X (M = Cu, Ag, Au; X = BF4, SbF6) and gold binuclear complexes [FcN(CH2PPh2AuCl)2], [FcN(CH2PPh2)2Au]2[SbF6]2 were prepared and examined for their redox activity. Introducing a ferrocene moiety into a mol. results in the incorporation of a metal center and a redox active moiety. The ligand FcN(CH2PPh2)2 (1) was prepared by alkylation of ferrocenamine FcNH2 with hydroxymethylphosphine HOCH2PPh2 and converted to diselenide FcN(CH2P(Se)Ph2)2 (1-Se) for crystallog. identification. Furthermore, a pair of open and cyclic digold(I) complexes containing bis-phosphane 1 as a P,P-bridging ligand, were isolated. Ligand 1, the corresponding phosphane selenide 1-Se and all complexes (except for the poorly soluble [(μ(P,P’)-1)2Au2][SbF6] and unstable [Ag(1-κ2P,P’)2][SbF6]) were further analyzed by cyclic voltammetry.

Although many compounds look similar to this compound(12080-32-9)Quality Control of Dichloro(1,5-cyclooctadiene)platinum(II), numerous studies have shown that this compound(SMILES:C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Flexible application of in synthetic route 16588-26-4

Although many compounds look similar to this compound(16588-26-4)Category: alcohols-buliding-blocks, numerous studies have shown that this compound(SMILES:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Utilization of a Hydrogen Source from Renewable Lignocellulosic Biomass for Hydrogenation of Nitroarenes, the main research direction is arylamine preparation; nirtoarene hydrogenation reduction.Category: alcohols-buliding-blocks.

Herein, the utilization of a hydrogen source from renewable lignocellulosic biomass, one of the most abundant renewable sources in nature, for a hydrogenation of nitroarenes was described. The hydrogenation was demonstrated by reduction of nitroarenes to arylamines e.g., I in up to 95% yields. Mechanism studies suggested that the hydrogenation occurred via a hydrogen transformation pathway.

Although many compounds look similar to this compound(16588-26-4)Category: alcohols-buliding-blocks, numerous studies have shown that this compound(SMILES:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Research on new synthetic routes about 1195-58-0

Although many compounds look similar to this compound(1195-58-0)Category: alcohols-buliding-blocks, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Kuthan, J.; Musil, L.; Kohoutova, A. researched the compound: Pyridine-3,5-dicarbonitrile( cas:1195-58-0 ).Category: alcohols-buliding-blocks.They published the article 《Dihydropyridines. XXIV. Partial hydrogenation of some 3,5-dicyanopyridines》 about this compound( cas:1195-58-0 ) in Collection of Czechoslovak Chemical Communications. Keywords: pyridine dihydro dicyano. We’ll tell you more about this compound (cas:1195-58-0).

Partial hydrogenation of 3,5-dicyanopyridine in EtOH over Pd on BaSO4 or BaCO3 gave a mixture of 3,5-dicyano-1,2-dihydropyridine and 3,5-dicyano-1,4-dihydropyridine. A similar hydrogenation of 3,5-dicyano-4-methylpyridine gave only the 1,2-dihydro derivative 3,5-Dicyano-2,6-dimethylpyridine and 3,5-dicyano-2,4,6-trimethylpyridine gave only traces of the 1,2- and 1,4-dihydro derivatives The mechanism of hydrogenation is discussed with the use of bicentric localization energies and simple Hueckel MO theory.

Although many compounds look similar to this compound(1195-58-0)Category: alcohols-buliding-blocks, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A new synthetic route of 1787246-78-9

Although many compounds look similar to this compound(1787246-78-9)Computed Properties of C22H24BF4N3O, numerous studies have shown that this compound(SMILES:CCC1=C(C(CC)=CC=C1)N2N=C3[N+]([C@]4([C@@]([H])(OC3)CC5=C4C=CC=C5)[H])=C2.F[B-](F)(F)F), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Hovey, M. Todd; Cohen, Daniel T.; Walden, Daniel M.; Cheong, Paul H.-Y.; Scheidt, Karl A. published an article about the compound: (5aS,10bR)-2-(2,6-Diethylphenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate( cas:1787246-78-9,SMILESS:CCC1=C(C(CC)=CC=C1)N2N=C3[N+]([C@]4([C@@]([H])(OC3)CC5=C4C=CC=C5)[H])=C2.F[B-](F)(F)F ).Computed Properties of C22H24BF4N3O. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1787246-78-9) through the article.

The Armillaria and Lactarius genera of fungi produce the antimicrobial and cytotoxic mellolide, protoilludane, and marasmane sesquiterpenoids. We report a unified synthetic strategy to access the protoilludane, mellolide, and marasmane families of natural products. The key features of these syntheses are (1) the organocatalytic, enantioselective construction of key chiral intermediates from a simple achiral precursor, (2) the utility of a key 1,2-cyclobutanediol intermediate to serve as a precursor to each natural product class, and (3) a direct chem. conversion of a protoilludane to a marasmane (I → II) through serendipitous ring contraction, which provides exptl. support for their proposed biosynthetic relationships.

Although many compounds look similar to this compound(1787246-78-9)Computed Properties of C22H24BF4N3O, numerous studies have shown that this compound(SMILES:CCC1=C(C(CC)=CC=C1)N2N=C3[N+]([C@]4([C@@]([H])(OC3)CC5=C4C=CC=C5)[H])=C2.F[B-](F)(F)F), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts