Komatsu, Kensuke et al. published their research in Journal of the American Chemical Society in 2005 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C7H9NO

Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices was written by Komatsu, Kensuke;Kikuchi, Kazuya;Kojima, Hirotatsu;Urano, Yasuteru;Nagano, Tetsuo. And the article was included in Journal of the American Chemical Society in 2005.Synthetic Route of C7H9NO This article mentions the following:

The authors have developed a series of fluorescent Zn2+ sensor mols. with distinct affinities for Zn2+, because biol. Zn2+ concentrations vary over a wide range from sub-nanomolar to millimolar. The new sensors have Kd values in the range of 10-8-10-4 M, compared with 2.7 nM for ZnAF-2. They do not fluoresce in the presence of other biol. important metal ions such as calcium or magnesium, and they can detect Zn2+ within 100 ms. In cultured cells, the fluorescence intensity of ZnAF-2 was saturated at low Zn2+ concentration, while that of ZnAF-3 (Kd = 0.79 μM) was not saturated even at relatively high Zn2+ concentrations In hippocampal slices, the authors measured synaptic release of Zn2+ in response to high-potassium-induced depolarization. ZnAF-2 showed similar levels of fluorescence increase in dentate gyrus (DG), CA3 and CA1, which were indistinguishable. However, ZnAF-3 showed a fluorescence increase only in DG. Thus, by using a combination of sensor mols., it was demonstrated for the first time that a higher Zn2+ concentration is released in DG than in CA3 or CA1 and that the authors can easily visualize Zn2+ concentration over a wide range. The authors believe that the use of various combinations of ZnAF family members will offer unprecedented versatility for fluorescence-microscopic imaging of Zn2+ in biol. applications. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0Synthetic Route of C7H9NO).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C7H9NO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kim, Seongwoo et al. published their research in Inorganic Chemistry in 2020 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.SDS of cas: 1777-82-8

Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids was written by Kim, Seongwoo;Lee, Ha-Eun;Suh, Jong-Min;Lim, Mi Hee;Kim, Min. And the article was included in Inorganic Chemistry in 2020.SDS of cas: 1777-82-8 This article mentions the following:

A functionalized metal-organic framework (MOF) catalyst applied to the sequential one-pot oxidation of alcs. to carboxylic acids controls the presence of a heterogeneous catalyst. The conversion of alcs. to aldehydes was acquired through aerobic oxidation using a well-known amino-oxy radical-functionalized MOF. In the same flask, a simple filtration of the radical MOF with mild heating of the solution completely altered the reaction media, providing radical scavenger-free conditions suitable for the autoxidation of the aldehydes formed in the first step to carboxylic acids. The mutually exclusive radical-catalyzed aerobic oxidation (the first step with MOF) and radical-inhibited autoxidation (the second step without MOF) are sequentially achieved in a one-pot manner. Overall, we demonstrate a powerful and efficient method for the sequential oxidation of alcs. to carboxylic acids by employing a readily functionalizable heterogeneous MOF. In addition, our MOF in-and-out method can be utilized in an environmentally friendly way for the oxidation of alcs. to carboxylic acids of industrial and economic value with broad functional group tolerance, including 2,5-furandicarboxylic acid and 1,4-benzenedicarboxylic acid, with good yield and reusability. Furthermore, MOF-TEMPO, as an antioxidative stabilizer, prevents the undesired oxidation of aldehydes, and the perfect “recoverability” of such a reactive MOF requires a re-evaluation of the advantages of MOFs from heterogeneity in catalytic and related applications. The mutually exclusive radical-catalyzed aerobic oxidation (the first step with MOF) and radical-inhibited autoxidation (the second step without MOF) are sequentially achieved in a one-pot manner. This MOF in-and-out method can be utilized in an environmentally friendly way for the oxidation of alcs. to carboxylic acids of industrial and economic value with broad functional group tolerance. Furthermore, MOF-TEMPO, as an antioxidative stabilizer, prevents the undesired oxidation of aldehydes. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8SDS of cas: 1777-82-8).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.SDS of cas: 1777-82-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cox, P. et al. published their research in Climacteric in 2019 | CAS: 128607-22-7

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 128607-22-7

Vulvovaginal atrophy in women after cancer was written by Cox, P.;Panay, N.. And the article was included in Climacteric in 2019.Application of 128607-22-7 This article mentions the following:

The number of women surviving longer after a cancer diagnosis is increasing. This means that more awareness regarding their health is required. This review will focus on vulvovaginal atrophy (VVA)/genitourinary syndrome of menopause, one of the most distressing adverse iatrogenic effects of the menopause, secondary to cancer therapies. The cancer therapies themselves, such as radiotherapy, chemotherapy, and surgery, have a direct impact on the lower genital tract which interplays with the ensuing hypoestrogenic state of the menopause. Symptoms of VVA are still under-reported and undertreated as neither clinicians nor patients are forthcoming in discussing the problem, despite its profound neg. impact on quality of life. In terms of treatment of VVA, this review will look at the use of various options, including estrogen post cancer diagnosis, as well as considering newer emerging therapies such as dehydroepiandrosterone, ospemifene, and laser. The care of a woman post cancer diagnosis should be a multidisciplinary responsibility. However, further research is required into emerging treatment options as well as long-term safety data, to ensure all health-care providers and women are fully informed and confident to effectively address the impact of VVA post cancer diagnosis. In the experiment, the researchers used many compounds, for example, (Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7Application of 128607-22-7).

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 128607-22-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rao, Jingxin et al. published their research in Microbial Cell Factories in 2019 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of (R)-1-(3-Chlorophenyl)ethanol

Efficient chiral synthesis by Saccharomyces cerevisiae spore encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase in organic solvents was written by Rao, Jingxin;Zhang, Rongzhen;Liang, Hongbo;Gao, Xiao-Dong;Nakanishi, Hideki;Xu, Yan. And the article was included in Microbial Cell Factories in 2019.Safety of (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:

Background: Saccharomyces cerevisiae AN120 osw2Δ spores were used as a host with good resistance to unfavorable environment. This work was undertaken to develop a new yeast spore-encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase for efficient chiral synthesis in organic solvents. Results: The spore microencapsulation of E228S/SCR II and GDH in S. cerevisiae AN120 osw2Δ catalyzed (R)-phenylethanol in a good yield with an excellent enantioselectivity (up to 99%) within 4 h. It presented good resistance and catalytic functions under extreme temperature and pH conditions. The encapsulation produced several chiral products with over 70% yield and over 99% enantioselectivity in Et acetate after being recycled for 4-6 times. It increased substrate concentration over threefold and reduced the reaction time two to threefolds compared to the recombinant Escherichia coli containing E228S and glucose dehydrogenase. Conclusions: This work first described sustainable enantioselective synthesis without exogenous cofactors in organic solvents using yeast spore-microencapsulation of coupled alc. dehydrogenases.[Figure not available: see fulltext.]. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Safety of (R)-1-(3-Chlorophenyl)ethanol).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of (R)-1-(3-Chlorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mateos-Gil, Jaime et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Synthesis and Functionalization of Allenes by Direct Pd-Catalyzed Organolithium Cross-Coupling was written by Mateos-Gil, Jaime;Mondal, Anirban;Castineira Reis, Marta;Feringa, Ben L.. And the article was included in Angewandte Chemie, International Edition in 2020.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane This article mentions the following:

A palladium-catalyzed cross-coupling between in situ generated allenyl/propargyl-lithium species and aryl bromides to yield highly functionalized allenes is reported. The direct and selective formation of allenic products preventing the corresponding isomeric propargylic product is accomplished by the choice of SPhos or XPhos based Pd catalysts. The methodol. avoids the prior transmetalation to other transition metals or reverse approaches that required prefunctionalization of substrates with leaving groups, resulting in a fast and efficient approach for the synthesis of tri- and tetrasubstituted allenes. Exptl. and theor. studies on the mechanism show catalyst control of selectivity in this allene formation. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Sensheng et al. published their research in Organic Letters in 2018 | CAS: 171032-87-4

(S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol

Transformation of Alkynes into Chiral Alcohols via TfOH-Catalyzed Hydration and Ru-Catalyzed Tandem Asymmetric Hydrogenation was written by Liu, Sensheng;Liu, Huan;Zhou, Haifeng;Liu, Qixing;Lv, Jinliang. And the article was included in Organic Letters in 2018.Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol This article mentions the following:

A novel full atom-economic process for the transformation of alkynes into chiral alcs. by TfOH-catalyzed hydration coupled with Ru-catalyzed tandem asym. hydrogenation in TFE under simple conditions has been developed. A range of chiral alcs. was obtained with broad functional group tolerance, good yields, and excellent stereoselectivities. In the experiment, the researchers used many compounds, for example, (S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol).

(S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gorrec, Fabrice et al. published their research in Acta Crystallographica, Section F: Structural Biology Communications in 2015 | CAS: 10030-85-0

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Reference of 10030-85-0

The MORPHEUS II protein crystallization screen was written by Gorrec, Fabrice. And the article was included in Acta Crystallographica, Section F: Structural Biology Communications in 2015.Reference of 10030-85-0 This article mentions the following:

High-quality macromol. crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for exptl. phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with com. available conditions. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Reference of 10030-85-0).

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Reference of 10030-85-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dickschat, Jeroen S. et al. published their research in Beilstein Journal of Organic Chemistry in 2018 | CAS: 60549-26-0

3-Hydroxy-5-methylbenzaldehyde (cas: 60549-26-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C8H8O2

Volatiles from the xylarialean fungus Hypoxylon invadens was written by Dickschat, Jeroen S.;Wang, Tao;Stadler, Marc. And the article was included in Beilstein Journal of Organic Chemistry in 2018.COA of Formula: C8H8O2 This article mentions the following:

The volatiles emitted by agar plate cultures of the xylarialean fungus Hypoxylon invadens were investigated by use of a closed loop stripping apparatus in combination with GC-MS. Several aromatic compounds were found that could only be identified by comparison to all possible constitutional isomers with different ring substitution patterns. For the set of identified compounds a plausible biosynthetic scheme was suggested that gives further support for the assigned structures. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methylbenzaldehyde (cas: 60549-26-0COA of Formula: C8H8O2).

3-Hydroxy-5-methylbenzaldehyde (cas: 60549-26-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C8H8O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Szterner, Piotr et al. published their research in Bioinorganic Chemistry and Applications in 2022 | CAS: 5743-47-5

Calcium 2-hydroxypropanoate pentahydrate (cas: 5743-47-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Category: alcohols-buliding-blocks

The synthesis of hydroxyapatite by hydrothermal process with calcium lactate pentahydrate: the effect of reagent concentrations, pH, temperature, and pressure was written by Szterner, Piotr;Biernat, Monika. And the article was included in Bioinorganic Chemistry and Applications in 2022.Category: alcohols-buliding-blocks This article mentions the following:

Hydroxyapatite and other calcium phosphates in the form of whiskers are lately widely considered as fillers for biocomposites due to their special biol. and reinforcing properties. Depending on the method of synthesis, apatite whiskers of various sizes and phase composition can be obtained. In our work, hydroxyapatite (HAp) whiskers were successfully prepared in reaction between calcium lactate pentahydrate and orthophosphoric acid. The advantage of the proposed technique is the simple but precise control of the HAp crystal morphol. and high product purity which is necessary for biomedical applications. The effect of reagent concentrations, pH, reaction temperature, and pressure on HAp whiskers’ morphol. and composition was investigated. In the result, we obtained hydroxyapatite of different morphol. such as whiskers, hexagonal rods, and nanorods. The products were characterized by SEM, XRD, and FTIR. In this work, the synthesis of HAp whiskers by direct decomposition of calcium lactate pentahydrate chelates under hydrothermal conditions was showed for the first time. In the experiment, the researchers used many compounds, for example, Calcium 2-hydroxypropanoate pentahydrate (cas: 5743-47-5Category: alcohols-buliding-blocks).

Calcium 2-hydroxypropanoate pentahydrate (cas: 5743-47-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Erensoy, Gizem et al. published their research in Journal of Molecular Structure in 2023 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Name: 5-Isopropyl-2-methylphenol

Synthesis, in vitro and in silico studies on novel 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles and their oxime derivatives as potent inhibitors of mPGES-1 was written by Erensoy, Gizem;Ding, Kai;Zhan, Chang-Guo;Ciftci, Gamze;Yelekci, Kemal;Duracik, Merve;Bingol Ozakpinar, Ozlem;Aydemir, Esra;Yilmaz, Zubeyde Nur;Sahin, Fikrettin;Kulabas, Necla;Tatar, Esra;Kucukguzel, Ilkay. And the article was included in Journal of Molecular Structure in 2023.Name: 5-Isopropyl-2-methylphenol This article mentions the following:

Human microsomal prostaglandin E synthase (mPGES)-1 is a glutathione-dependent membrane-bound enzyme which is involved in the terminal stage of prostaglandin E2 (PGE2) synthesis. It has been well reported as a key target for the discovery of new anti-inflammatory and anti-cancer drugs. Specific inhibitors of mPGES-1 are anticipated to selectively restrain the generation of PGE2 induced by the inflammatory stimuli, without obstructing of the regular biosynthesis of other homeostatic prostanoids. Therefore, the design of mPGES-1 inhibitors can represent a better choice to take control of PGE2 associated diseases, compared with conventional non-steroidal anti-inflammatory drugs and cyclooxygenase (COX) inhibitors, which are known for their serious side effects. Although there is an intensive effort for the identification of mPGES-1 inhibitors, none of the unveiled mols. so far have reached the clin. market. Therefore, the development of novel mPGES-1 inhibitors with proper drug-like properties is still an unmet medical need. As a continuation of the research for the identification of new chemotypes which might inhibit this enzyme, the design and synthesis of 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles I (R1 = CH3, C2H5; R2 = H, Br, Cl, OCH3, F; R3 = H, Cl) and their oxime derivatives IIas inhibitors of human mPGES-1 were reported. Twenty-four target compounds I and II were screened for their mPGES-1/COX-2 inhibitory activities as well as their cytotoxicity. Of these compounds, II (R1 = Me, R2 = Cl, R3 = H; R1 = Me, R2 = Br, R3 = H) showed potent mPGES-1 inhibition by IC50 values of 0.224±0.070 μM and 1.08±0.35 μM, resp. These two compounds have also been observed to inhibit angiogenesis in matrigel tube formation assay with no toxicity toward HUVEC cells. In silico studies were also held to understand inhibition mechanisms of the most active compounds using mol. docking, mol. dynamics calculations and ADMET predictions. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Name: 5-Isopropyl-2-methylphenol).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Name: 5-Isopropyl-2-methylphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts