Cai, Taimei team published research on ACS Sustainable Chemistry & Engineering in 2021 | 533-73-3

Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Name: Benzene-1,2,4-triol

Cai, Taimei;Deng, Qiang;Peng, Hailong;Zhong, Jin;Wang, Jun;Dai, Guiping;Zeng, Zheling;Zou, Ji-Jun;Deng, Shuguang research published 《 Selective Synthesis of Bioderived Dibenzofurans and Bicycloalkanes from a Cellulose-Based Route》, the research content is summarized as follows. The synthesis of dibenzofurans and bicycloalkanes from biomass is important for sustainable high-value chems. and high-d. fuels. Currently, their biomass-based precursor is mainly derived from lignin with limited yields. Herein, we propose a cellulose-based synthesis route for dibenzofurans with a yield of 72.3% via the integration of oxidative coupling of 1,2,4-benzenetriol to diphenol combined with subsequent dehydration under environmentally friendly reaction conditions. After hydrodeoxygenation, bicycloalkanes are obtained with a yield of 70.5% by catalysis performed over Pd/C and various zeolites. This work provides a powerful cellulose-based strategy for the synthesis of dibenzofurans and bicycloalkanes, which was previously unattainable in the conventional lignin-based route.

Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Arab, Yasmine team published research on International Journal of Biosciences in 2022 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Category: alcohols-buliding-blocks

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Arab, Yasmine;Zellagui, Amar;Ceylan, Ozgur;Olmez, Ozge Tokul;Duru, Mehmet Emin;Ozturk, Mehmet research published 《 In vitro antioxidant, antibiofilm, anticholinesterase and antityrosinase activities of Senecio hoggariensis hydro-methanolic extract》, the research content is summarized as follows. This study was carried out to identify the phenolic profile of hydro-methanolic extract from an endemic Algerian species Senecio hoggariensis and to investigate their health properties in particular with respect to antioxidant, anticholinesterase, anti-tyrosinase, antimicrobial and antibiofilm activities. Using high-performance liquid chromatog. (HPLC-DAD) techniques, nine compounds were identified: chlorogenic acid, curcumin, 4-hydroxylresorkinol, rutin, elagic acid, protocatechic acid, 4-hydroxy benzaldehid, pyrocatechol and 4-oh-benzoic acid. Antioxidant properties were determined using:DPPH• (2,2′-diphenyl-1-picrylhydrazyl radical), ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical cation)), β-carotene linolic acid, CUPRAC (cupric reducing antioxidant capacity) and metal chelating assays. The extract showed mild activity compared to standards The ability of the extract to inhibit enzymes: acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase was investigated. The studied extract showed relatively moderate tyrosinase inhibitory activity. Also, it inhibited the development of all tested microorganisms; the highest antibiofilm activity was 51.08% against Candida albicans ATCC 10239 biofilm production at 10 mg/mL concentration The findings indicate that S.hoggariensis may be an alternative source of content in the fight against bacterial infections.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Balakrishnan, Akash team published research on Environmental Science and Pollution Research in 2021 | 533-73-3

Recommanded Product: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Recommanded Product: Benzene-1,2,4-triol

Balakrishnan, Akash;Gopalram, Keerthiga;Appunni, Sowmya research published 《 Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO2 modified catalyst: kinetics and operating cost analysis》, the research content is summarized as follows. Effective pesticide remediation technol. demands amendments in the advanced oxidation process for its continuous treatment and catalyst recovery. The evidence of 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide in water bodies, poses a major environmental threat to both humans and aquatic organisms. In the present study, a recirculation type photocatalytic reactor was developed to treat 2,4-dichlorophenoxyacetic acid using chitosan-TiO2 beads prepared via impregnation method under UV light. At optimized conditions, chitosan-TiO2 beads showed a maximum photocatalytic degradation of 86% than com. TiO2 (65%) and followed pseudo first-order reaction. The 2,4-D degradation follows pseudo first-order kinetics under UV irradiation with a rate constant of 0.12 h-1, and the intermediates were identified using LCMS anal. The total operational cost of the chitosan-TiO2 catalyst was found to be profitable (Rs. 1323 for 2 L) than that of TiO2 (Rs. 1679) at optimized conditions. The beads were reusable up to 4 consecutive cycles without loss in efficiency. This study briefs photocatalytic removal of 2,4-dichlorophenoxyacetic acid in a recirculation-type reactor for its reliability, low cost, efficiency, reusability, and commercialization.

Recommanded Product: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barisic, Veronika team published research on Journal of Food Processing and Preservation in 2022 | 533-73-3

Recommanded Product: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Recommanded Product: Benzene-1,2,4-triol

Barisic, Veronika;Flanjak, Ivana;Loncaric, Ante;Pichler, Anita;Jozinovic, Antun;Babic, Jurislav;Subaric, Drago;Milicevic, Borislav;Ackar, Djurdjica research published 《 Valorization of cocoa shell: Impact of high voltage electrical discharge and drying technology on properties of cocoa shell》, the research content is summarized as follows. There is a growing interest for use of cocoa shell for the enrichment of different food products and for resolving problem of disposal of shell. High voltage elec. discharge (HVED) is a non-thermal technol. that could solve problems linked to use of cocoa shell (contaminants and undesirable components). This paper investigated the broader impact of HVED on the properties of cocoa shells and how much influence drying (freeze- and oven- drying), which needs to be conducted, actually has on these properties. After the treatments, oil binding capacity increased in freeze-dried samples from 1.598 to 2.054 g/g. Also, water was easier to remove from HVED-treated oven-dried samples (by 1.75%). HPLC anal. showed that HVED caused better preservation of (-)-epicatechin and (-)-epicatechin gallate after oven-drying. Klason lignin contents slightly increased and differential scanning calorimetry showed higher thermostability of cocoa shell especially after HVED and freeze-drying because peak shifted for 11.54°C. Cocoa shell is a valuable byproduct of the chocolate industry, and it presents a problem for the environment. High voltage elec. discharge (HVED) would be a sustainable solution for this problem. After the HVED treatment, drying process is needed, and this study presents insights in a combination of these two technologies on cocoa shell properties. These results show that cocoa shells can be modified with these processes and are suitable for application in different food products.

Recommanded Product: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

An, Tingting team published research on Food Research International in 2021 | 533-73-3

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 533-73-3

An, Tingting;Chen, Mengxue;Zu, Zhongqi;Chen, Qi;Lu, Hengqian;Yue, Pengxiang;Gao, Xueling research published 《 Untargeted and targeted metabolomics reveal changes in the chemical constituents of instant dark tea during liquid-state fermentation by Eurotium cristatum》, the research content is summarized as follows. Instant green tea powder was used as raw material to prepare an instant dark tea via liquid-state fermentation by Eurotium cristatum. To understand how the chem. constituents present in fermented green tea develop during fermentation, samples were collected on different days during fermentation for qual. analyses by ultra-performance liquid chromatog.-Q Exactive Orbitrap/Mass spectrometry. Untargeted metabolomics analyses revealed that the levels of original secondary metabolites in the instant green tea changed significantly from day 3 to day 5 during fermentation Targeted metabolomics indicated that the levels of galloylated catechins (GCs) and free amino acids (FAAs) significantly decreased, but the nongalloylated catechins (NGCs), alkaloids, thearubigins and theabrownins increased dramatically after fermentation The changes in the contents of catechins, gallic acid and free amino acids in the instant dark tea samples were pos. related to the DPPH radical scavenging activities in vitro, and the phenolic acids and FAAs were pos. related to the inhibitory effects towards α-glucosidase. These results showed that fermentation by Eurotium cristatum is critical to the formation of certain qualities of instant dark tea.

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chouchane, Habib team published research on Environmental Technology in | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Synthetic Route of 533-73-3

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Synthetic Route of 533-73-3

Zaouak, Amira;Chouchane, Habib;Jelassi, Haikel research published 《 Gamma irradiation-induced degradation and mineralization of methocarbamol in aqueous solution》, the research content is summarized as follows. Gamma irradiation degradation of the extensively used muscle relaxant in the world methocarbamol (MET) was studied. MET aqueous solutions were irradiated by gamma rays emitted by a Cobalt 60 source at doses of 1-4 kGy. Our findings demonstrated that gamma irradiation degraded more than 98.5% of MET. Absorption spectra anal. revealed that when increased irradiation dose, the absorption bands declined with complete disappearance at 4 kGy dose. Addnl., the most radiolytic degradation rate was recorded at neutral pH, marked by Total Organic Carbon (TOC) removal rate of 98% reflecting the total mineralization of MET at 4 kGy. In-depth spectrophotometric analyses advocated a pseudo-first-order type of MET degradation kinetics. The obtained apparent rate constant value was kapp, MET = (0.02167 ± 0.0006) min-1. Gas chromatog.-mass spectrometry (GC-MS) allowed the detection of 3-(o-methoxyphenoxy)-1,2 propanediol,2-methoxyphenol, 1,2,3 propanetriol, 1,2-dihydroxybenzene and 1,2,4 benzentriol identified as byproducts generated during radiolytic degradation Finally, an outline of the degradation mechanism was suggested according to the obtained byproducts.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Synthetic Route of 533-73-3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zaouak, Amira team published research on Environmental Technology in | 533-73-3

Category: alcohols-buliding-blocks, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Zaouak, Amira;Chouchane, Habib;Jelassi, Haikel research published 《 Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl》, the research content is summarized as follows. An efficient gamma radiolytic decomposition of one of the extensively used herbicides in the world quizalofo-p-Et (QPE) was explored under different exptl. conditions. Aqueous solutions of QPE were irradiated by gamma rays emitted by a Cobalt 60 source. QPE aqueous solutions were irradiated at doses of 0.5-3 kGy with 26.31 Gy min-1 dose rate. Obtained results indicated that removal efficiency of 98.5% and 73% of QPE were obtained, resp., in absence and in presence of dissolved oxygen. Change of absorption spectra, pH effect and Total Organic Carbon (TOC) were carried out and studied. It was found that all absorption bands decreased with increasing irradiation dose and disappear totally after 3 kGy applied dose. Three pH conditions (pH = 10, pH = 6.2 and pH = 3) were applied in radiolytic degradation of QPE showing that the best removal efficiency has been found for neutral pH. Interestingly, the % TOC removal reaches 98% at 3 kGy indicated practically total mineralization. Furthermore, spectrophotometric analyses argued in favor of a pseudo-first-order kinetic of QPE degradation The resulting apparent rate constant value is approx. kapp = (0.012 ± 0.001) min-1. Finally, several byproducts such as 6-chloroquinoxalin -2-ol, 2-(4-hydroxy-phenyoxy) propionate, 1,4-hydroquinone, quinone, 4-chlorobenzene-1,2diol and 1,2,4-benzenetriol were identified by gas chromatog.-mass spectrometry (GC/MS) evidencing that radiation process starting with the fragmentation of the mol. involving the hydroxyl radical, which is generated by the radiolysis of water. Based on the identification intermediates, a degradation mechanistic schema of QPE has been proposed.

Category: alcohols-buliding-blocks, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

How did you first get involved in researching 105-13-5

COA of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Wei, DY; Yang, P; Yu, CM; Zhao, FK; Wang, YL; Peng, ZH or send Email.

Authors Wei, DY; Yang, P; Yu, CM; Zhao, FK; Wang, YL; Peng, ZH in AMER CHEMICAL SOC published article about in [Wei, Dongyue; Yang, Peng; Yu, Chuanman; Zhao, Fengkai; Wang, Yilei; Peng, Zhihua] China Univ Petr East China, Coll Sci, Dept Chem, Qingdao 266580, Shandong, Peoples R China in 2021, Cited 51. COA of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A manganese-catalyzed N-alkylation reaction of amines with alcohols via hydrogen autotransfer strategy has been demonstrated. The developed practical catalytic system including an inexpensive, nontoxic, commercially available MnCl2 or MnBr(CO) s as the metal salt and triphenylphosphine as a ligand provides access to diverse aromatic, heteroaromatic, and aliphatic secondary amines in moderate-to-high yields. In addition, this operationally simple protocol is scalable to the gram level and suitable for synthesizing heterocycles such as indole and resveratrol-derived amines known to be active for Alzheimer’s disease.

COA of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Wei, DY; Yang, P; Yu, CM; Zhao, FK; Wang, YL; Peng, ZH or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome Chemistry Experiments For 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Singh, A; Maji, A; Joshi, M; Choudhury, AR; Ghosh, K or send Email.. SDS of cas: 105-13-5

SDS of cas: 105-13-5. Recently I am researching about BIS(IMINO)PYRIDINE COBALT COMPLEXES; CHEMOSELECTIVE HYDROGENATION; IRON; EFFICIENT; SOLVENT; AMIDES; MILD; HYDROBORATION; ISOMERIZATION; INHIBITION, Saw an article supported by the CSIR, New DelhiCouncil of Scientific & Industrial Research (CSIR) – India [01(2942)/18/EMR-II]; MHRD; DST/INSPIRE fellowship [IF160793]. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Singh, A; Maji, A; Joshi, M; Choudhury, AR; Ghosh, K. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L-1, L-2 and L-3 having NNN donor atoms respectively. Co1, Co2 and Co3 were characterized by IR, UV-Vis. and ESI-MS spectroscopic studies. Single crystal X-ray diffraction studies were investigated to authenticate the molecular structures of Co1 and Co3. Catalysts Col, Co2 and Co3 were utilized to study the dehydrogenative activation of alcohols for N-alkylation of amines, alpha-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcohols, anilines and ketones were exploited. A series of control experiments for N-alkylation of amines, alpha-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were investigated to characterize cobalt-alkoxide and cobalt-hydride intermediates. Reduction of styrene by evolved hydrogen gas during the reaction was investigated to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways were proposed for N-alkylation of amines, alpha-alkylation of ketones and synthesis of quinolines on the basis of control experiments and detection of reaction intermediates.

Welcome to talk about 105-13-5, If you have any questions, you can contact Singh, A; Maji, A; Joshi, M; Choudhury, AR; Ghosh, K or send Email.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome and Easy Science Experiments about 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Kobayashi, F; Fujita, M; Ide, T; Ito, Y; Yamashita, K; Egami, H; Hamashima, Y or send Email.. Name: (4-Methoxyphenyl)methanol

I found the field of Chemistry very interesting. Saw the article Dual-Role Catalysis by Thiobenzoic Acid in C alpha-H Arylation under Photoirradiation published in 2021. Name: (4-Methoxyphenyl)methanol, Reprint Addresses Hamashima, Y (corresponding author), Univ Shizuoka, Sch Pharmaceut Sci, Suruga Ku, Shizuoka 4228526, Japan.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Thiobenzoic acid (TBA) can serve as a single-electron reducing agent under photoirradiation from a blue light-emitting diode, in the presence of appropriate electron acceptors, and the resulting sulfur-centered radical species undergoes hydrogen atom abstraction. This dual-role catalysis by TBA enables regioselectivie C alpha-H arylation of benzylamines, benzyl alcohols, and ethers, as well as dihydroimidazoles, with cyano(hetero)arenes in good yield, without the need for a transition-metal photocatalyst and/or synthetically elaborated organic dyes.

Welcome to talk about 105-13-5, If you have any questions, you can contact Kobayashi, F; Fujita, M; Ide, T; Ito, Y; Yamashita, K; Egami, H; Hamashima, Y or send Email.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts