Sato, Kei et al. published their research in Atmospheric Environment: X in 2022 | CAS: 60463-12-9

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C7H7NO4

Formation of secondary organic aerosol tracers from anthropogenic and biogenic volatile organic compounds under varied NOx and oxidant conditions was written by Sato, Kei;Ikemori, Fumikazu;Ramasamy, Sathiyamurthi;Iijima, Akihiro;Kumagai, Kimiyo;Fushimi, Akihiro;Fujitani, Yuji;Chatani, Satoru;Tanabe, Kiyoshi;Takami, Akinori;Tago, Hiroshi;Saito, Yoshinori;Saito, Shinji;Hoshi, Junya;Morino, Yu. And the article was included in Atmospheric Environment: X in 2022.Computed Properties of C7H7NO4 This article mentions the following:

For source apportionment by tracer method of secondary organic aerosol (SOA), the ratios of aerosol tracer to total SOA mass (fSOA) were determined during the oxidation of toluene, naphthalene, α-pinene, and isoprene by a series of laboratory experiments Seven anthropogenic SOA tracers maintaining an aromatic ring structure, including 4-nitrophthalic acid and 3,5-dinitrosalicylic, were newly investigated as a chamber study together with 21 traditional aerosol tracers of anthropogenic and biogenic SOA. Experiments of the OH-initiated oxidation of anthropogenic VOCs were conducted as a function of the initial VOC/NOx ratio. No significant dependence on the VOC/NOx ratio was observed for the fSOA of 2,3-dihydroxy-4-oxopentanoic acid from toluene and phthalic acid from naphthalene, whereas the fSOA of nitroarom. compounds such as 5-nitrosalicylic acid, 3,5-dinitrosalicylic acid, and 4-nitrophthalic acid increased with decreasing VOC/NOx ratio. Among seven newly evaluated anthropogenic SOA tracers, we concluded that 3,5-dinitronsalicylic can be used as a toluene SOA tracer, whereas 4-nitrophthalic acid can be used as a naphthalene SOA tracer. Results of kinetic calculations suggest that naphthalene is a major source of 5-nitrosalicylic acid under urban and rural conditions of previous observation studies. The ozonolysis and NO3-initiated oxidation of biogenic VOCs were investigated in addition to OH-initiated oxidation of biogenic VOCs. As for biogenic SOA tracers such as pinic acid and 2-methyltetrols, the fSOA value measured for the NO3-intiated reaction was lower than that of the OH-initiated oxidation and the fSOA value measured for the ozonolysis was not necessarily close to that of the OH-initiated oxidation These results suggest that daytime and nighttime biogenic SOA formation events are interpreted by using different sets of the fSOA values. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Computed Properties of C7H7NO4).

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C7H7NO4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Xingxian et al. published their research in Journal of Chemical Research in 2010 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 1122-71-0

Lewis base-catalyzed Mukaiyama-aldol reaction of trimethylsilyl enolates with aldehydes was written by Zhang, Xingxian;Shi, Junchen;Hu, Shenghui. And the article was included in Journal of Chemical Research in 2010.Related Products of 1122-71-0 This article mentions the following:

An efficient Mukaiyama-type aldol reaction of three silyl enolates, such as 1-[(trimethylsilyl)oxy]-1-methoxy-2-methyl-2-propene [i.e., [(1-methoxy-2-methyl-1-propen-1-yl)oxy]trimethylsilane], 1-phenyl-1-[(trimethylsilyl)oxy]ethene [i.e., [1-[(trimethylsilyl)oxy]ethenyl]silane] and 1,2-bis[(trimethylsilyl)oxy]cyclobutene with aryl aldehydes and α,β-unsaturated aldehydes catalyzed by 5 mol% Lewis base catalyst (4-nitrophenoxy)magnesium iodide [i.e., 4-O2NPhOMgI] in CH2Cl2 solvent is described. The reaction proceeds under mild reaction conditions and the synthesis of the target compounds was achieved in good yield. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0Related Products of 1122-71-0).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 1122-71-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ghafuri, Hossein et al. published their research in Scientific Reports in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (4-Chlorophenyl)methanol

Copper(II)-β-cyclodextrin immobilized on graphitic carbon nitride nanosheets as a highly effective catalyst for tandem oxidative amidation of benzylic alcohols was written by Ghafuri, Hossein;Rashidizadeh, Afsaneh;Gorab, Mostafa Ghafori;Jafari, Ghazaleh. And the article was included in Scientific Reports in 2022.Recommanded Product: (4-Chlorophenyl)methanol This article mentions the following:

In this study, an efficient catalyst based on graphitic carbon nitride nanosheets (CN) and copper(II) supported β-cyclodextrin (βCD/Cu(II)) was synthesized and used for tandem oxidative amidation of benzylic alcs. using amine hydrochloride salts to form aryl-amides R1C(O)NR2R3 [R1 = H, 4-Cl, 4-OMe, etc.; R2 = H, Ph, Bn, etc.]. In this regard, CN was functionalized by β-CD/Cu(II) via 1,3-dibromopropane linker (CN-Pr-β-CD/Cu(II)). The prepared catalyst was characterized using FT-IR, XRD, FE-SEM, EDS, TGA, ICP-OES, BET and TEM analyses. CN-Pr-β-CD/Cu(II) could be recycled and reused five times without significant reduction in reaction efficiency. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Recommanded Product: (4-Chlorophenyl)methanol).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (4-Chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Khalil, Mohamad et al. published their research in Current medicinal chemistry in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of 5-Isopropyl-2-methylphenol

Beneficial Effects of Carvacrol on In Vitro Models of Metabolically-Associated Liver Steatosis and Endothelial Dysfunction: A Role for Fatty Acids in Interfering with Carvacrol Binding to Serum Albumin. was written by Khalil, Mohamad;Serale, Nadia;Diab, Farah;Baldini, Francesca;Portincasa, Piero;Lupidi, Giulio;Vergani, Laura. And the article was included in Current medicinal chemistry in 2022.Quality Control of 5-Isopropyl-2-methylphenol This article mentions the following:

BACKGROUND: Carvacrol, a plant phenolic monoterpene, is largely employed as food additive and phytochemical. OBJECTIVE: We aimed to assess the lipid lowering and protective effects of carvacrol in vitro using cellular models of hepatic steatosis and endothelial dysfunction. We also investigated if and how the binding of carvacrol to albumin, the physiological transporter for small compounds in the blood, might be altered by the presence of high levels of fatty acids (FAs). METHODS: Hepatic FaO cells treated with exogenous FAs mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured spectrophotometrically lipid accumulation and release, lipoperoxidation, free radical production, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin in the presence or absence of high levels of FAs was assessed by absorption and emission spectroscopies. RESULTS: Carvacrol counteracted lipid accumulation and oxidative stress in hepatocytes and protected endothelial cells from oxidative stress and dysfunction. Moreover, high levels of FAs reduced the binding of carvacrol to albumin. CONCLUSION: The results suggest the good potential of carvacrol in ameliorating dysfunction of hepatic and endothelial cells in vitro. High levels of circulating FAs might compete with carvacrol for binding to albumin thus influencing its transport and bio-distribution. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Quality Control of 5-Isopropyl-2-methylphenol).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of 5-Isopropyl-2-methylphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Erensoy, Gizem et al. published their research in Journal of Molecular Structure in 2023 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Name: 5-Isopropyl-2-methylphenol

Synthesis, in vitro and in silico studies on novel 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles and their oxime derivatives as potent inhibitors of mPGES-1 was written by Erensoy, Gizem;Ding, Kai;Zhan, Chang-Guo;Ciftci, Gamze;Yelekci, Kemal;Duracik, Merve;Bingol Ozakpinar, Ozlem;Aydemir, Esra;Yilmaz, Zubeyde Nur;Sahin, Fikrettin;Kulabas, Necla;Tatar, Esra;Kucukguzel, Ilkay. And the article was included in Journal of Molecular Structure in 2023.Name: 5-Isopropyl-2-methylphenol This article mentions the following:

Human microsomal prostaglandin E synthase (mPGES)-1 is a glutathione-dependent membrane-bound enzyme which is involved in the terminal stage of prostaglandin E2 (PGE2) synthesis. It has been well reported as a key target for the discovery of new anti-inflammatory and anti-cancer drugs. Specific inhibitors of mPGES-1 are anticipated to selectively restrain the generation of PGE2 induced by the inflammatory stimuli, without obstructing of the regular biosynthesis of other homeostatic prostanoids. Therefore, the design of mPGES-1 inhibitors can represent a better choice to take control of PGE2 associated diseases, compared with conventional non-steroidal anti-inflammatory drugs and cyclooxygenase (COX) inhibitors, which are known for their serious side effects. Although there is an intensive effort for the identification of mPGES-1 inhibitors, none of the unveiled mols. so far have reached the clin. market. Therefore, the development of novel mPGES-1 inhibitors with proper drug-like properties is still an unmet medical need. As a continuation of the research for the identification of new chemotypes which might inhibit this enzyme, the design and synthesis of 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles I (R1 = CH3, C2H5; R2 = H, Br, Cl, OCH3, F; R3 = H, Cl) and their oxime derivatives IIas inhibitors of human mPGES-1 were reported. Twenty-four target compounds I and II were screened for their mPGES-1/COX-2 inhibitory activities as well as their cytotoxicity. Of these compounds, II (R1 = Me, R2 = Cl, R3 = H; R1 = Me, R2 = Br, R3 = H) showed potent mPGES-1 inhibition by IC50 values of 0.224±0.070 μM and 1.08±0.35 μM, resp. These two compounds have also been observed to inhibit angiogenesis in matrigel tube formation assay with no toxicity toward HUVEC cells. In silico studies were also held to understand inhibition mechanisms of the most active compounds using mol. docking, mol. dynamics calculations and ADMET predictions. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Name: 5-Isopropyl-2-methylphenol).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Name: 5-Isopropyl-2-methylphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dickschat, Jeroen S. et al. published their research in Beilstein Journal of Organic Chemistry in 2018 | CAS: 60549-26-0

3-Hydroxy-5-methylbenzaldehyde (cas: 60549-26-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C8H8O2

Volatiles from the xylarialean fungus Hypoxylon invadens was written by Dickschat, Jeroen S.;Wang, Tao;Stadler, Marc. And the article was included in Beilstein Journal of Organic Chemistry in 2018.COA of Formula: C8H8O2 This article mentions the following:

The volatiles emitted by agar plate cultures of the xylarialean fungus Hypoxylon invadens were investigated by use of a closed loop stripping apparatus in combination with GC-MS. Several aromatic compounds were found that could only be identified by comparison to all possible constitutional isomers with different ring substitution patterns. For the set of identified compounds a plausible biosynthetic scheme was suggested that gives further support for the assigned structures. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methylbenzaldehyde (cas: 60549-26-0COA of Formula: C8H8O2).

3-Hydroxy-5-methylbenzaldehyde (cas: 60549-26-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C8H8O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gorrec, Fabrice et al. published their research in Acta Crystallographica, Section F: Structural Biology Communications in 2015 | CAS: 10030-85-0

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Reference of 10030-85-0

The MORPHEUS II protein crystallization screen was written by Gorrec, Fabrice. And the article was included in Acta Crystallographica, Section F: Structural Biology Communications in 2015.Reference of 10030-85-0 This article mentions the following:

High-quality macromol. crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for exptl. phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with com. available conditions. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Reference of 10030-85-0).

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Reference of 10030-85-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Sensheng et al. published their research in Organic Letters in 2018 | CAS: 171032-87-4

(S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol

Transformation of Alkynes into Chiral Alcohols via TfOH-Catalyzed Hydration and Ru-Catalyzed Tandem Asymmetric Hydrogenation was written by Liu, Sensheng;Liu, Huan;Zhou, Haifeng;Liu, Qixing;Lv, Jinliang. And the article was included in Organic Letters in 2018.Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol This article mentions the following:

A novel full atom-economic process for the transformation of alkynes into chiral alcs. by TfOH-catalyzed hydration coupled with Ru-catalyzed tandem asym. hydrogenation in TFE under simple conditions has been developed. A range of chiral alcs. was obtained with broad functional group tolerance, good yields, and excellent stereoselectivities. In the experiment, the researchers used many compounds, for example, (S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol).

(S)-1-(2-Fluorophenyl)ethanol (cas: 171032-87-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (S)-1-(2-Fluorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rao, Jingxin et al. published their research in Microbial Cell Factories in 2019 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of (R)-1-(3-Chlorophenyl)ethanol

Efficient chiral synthesis by Saccharomyces cerevisiae spore encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase in organic solvents was written by Rao, Jingxin;Zhang, Rongzhen;Liang, Hongbo;Gao, Xiao-Dong;Nakanishi, Hideki;Xu, Yan. And the article was included in Microbial Cell Factories in 2019.Safety of (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:

Background: Saccharomyces cerevisiae AN120 osw2Δ spores were used as a host with good resistance to unfavorable environment. This work was undertaken to develop a new yeast spore-encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase for efficient chiral synthesis in organic solvents. Results: The spore microencapsulation of E228S/SCR II and GDH in S. cerevisiae AN120 osw2Δ catalyzed (R)-phenylethanol in a good yield with an excellent enantioselectivity (up to 99%) within 4 h. It presented good resistance and catalytic functions under extreme temperature and pH conditions. The encapsulation produced several chiral products with over 70% yield and over 99% enantioselectivity in Et acetate after being recycled for 4-6 times. It increased substrate concentration over threefold and reduced the reaction time two to threefolds compared to the recombinant Escherichia coli containing E228S and glucose dehydrogenase. Conclusions: This work first described sustainable enantioselective synthesis without exogenous cofactors in organic solvents using yeast spore-microencapsulation of coupled alc. dehydrogenases.[Figure not available: see fulltext.]. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Safety of (R)-1-(3-Chlorophenyl)ethanol).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of (R)-1-(3-Chlorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kim, Seongwoo et al. published their research in Inorganic Chemistry in 2020 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.SDS of cas: 1777-82-8

Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids was written by Kim, Seongwoo;Lee, Ha-Eun;Suh, Jong-Min;Lim, Mi Hee;Kim, Min. And the article was included in Inorganic Chemistry in 2020.SDS of cas: 1777-82-8 This article mentions the following:

A functionalized metal-organic framework (MOF) catalyst applied to the sequential one-pot oxidation of alcs. to carboxylic acids controls the presence of a heterogeneous catalyst. The conversion of alcs. to aldehydes was acquired through aerobic oxidation using a well-known amino-oxy radical-functionalized MOF. In the same flask, a simple filtration of the radical MOF with mild heating of the solution completely altered the reaction media, providing radical scavenger-free conditions suitable for the autoxidation of the aldehydes formed in the first step to carboxylic acids. The mutually exclusive radical-catalyzed aerobic oxidation (the first step with MOF) and radical-inhibited autoxidation (the second step without MOF) are sequentially achieved in a one-pot manner. Overall, we demonstrate a powerful and efficient method for the sequential oxidation of alcs. to carboxylic acids by employing a readily functionalizable heterogeneous MOF. In addition, our MOF in-and-out method can be utilized in an environmentally friendly way for the oxidation of alcs. to carboxylic acids of industrial and economic value with broad functional group tolerance, including 2,5-furandicarboxylic acid and 1,4-benzenedicarboxylic acid, with good yield and reusability. Furthermore, MOF-TEMPO, as an antioxidative stabilizer, prevents the undesired oxidation of aldehydes, and the perfect “recoverability” of such a reactive MOF requires a re-evaluation of the advantages of MOFs from heterogeneity in catalytic and related applications. The mutually exclusive radical-catalyzed aerobic oxidation (the first step with MOF) and radical-inhibited autoxidation (the second step without MOF) are sequentially achieved in a one-pot manner. This MOF in-and-out method can be utilized in an environmentally friendly way for the oxidation of alcs. to carboxylic acids of industrial and economic value with broad functional group tolerance. Furthermore, MOF-TEMPO, as an antioxidative stabilizer, prevents the undesired oxidation of aldehydes. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8SDS of cas: 1777-82-8).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.SDS of cas: 1777-82-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts