Li, Weili et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of Oct-1-en-3-ol

Insight into the aroma dynamics of Dongpo pork dish throughout the production process using electronic nose and GCxGC-MS was written by Li, Weili;Zheng, Lanting;Xiao, Yue;Li, Liangchao;Wang, Ning;Che, Zhenming;Wu, Tao. And the article was included in LWT–Food Science and Technology in 2022.Quality Control of Oct-1-en-3-ol This article mentions the following:

In this study, the aroma dynamic changes throughout the manufacturing process of Dongpo pork dish (DPD) model were investigated with electronic nose and two-dimensional gas chromatog. coupled with mass spectrometry (GC x GC-MS). The results of both electronic nose and GC x GC-MS studies were consistent in that the frying and steaming stages had the greatest effect on the aroma composition of DPD. A total of 111 volatiles were detected, 59 of which were key volatiles. The odor activity analyses further revealed that pentanal, hexanal, 1-octen-3-ol, 2,3-pentanedione and (E)-2-octenal as key aroma contributors during the frying stage, while 3-methylbutyraldehyde were mainly formed during the steaming stage. These aromas were mainly generated through the thermal degradation of lipids and the Maillard reaction. Hence, this study, for the first time, provided some profound insights for the industrial production and flavor control of DPD products. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Quality Control of Oct-1-en-3-ol).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of Oct-1-en-3-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Telfer, Shane G. et al. published their research in Angewandte Chemie, International Edition in 2004 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 1122-71-0

Noncovalent ligand strands for transition-metal helicates: The straightforward and stereoselective self-assembly of dinuclear double-stranded helicates using hydrogen bonding was written by Telfer, Shane G.;Sato, Tomohiro;Kuroda, Reiko. And the article was included in Angewandte Chemie, International Edition in 2004.Recommanded Product: 1122-71-0 This article mentions the following:

A genuinely supramol. approach to transition-metal helicates is presented in which eight simple components (four ions and four small mols.) self-assemble to form dinuclear double helicates, where the ligand strands are built up through hydrogen-bonding interactions. The complexes [Co2(L)2(L-H)2Cl2] (L = 6-methylpyridin-2-ylmethanol, R-1-(6-methylpyridin-2-yl)ethanol and (6-methylpyridin-2-yl)nitromethanol) self-assembled and were characterized by x-ray crystallog. The self-assembly process is highly stereoselective. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0Recommanded Product: 1122-71-0).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 1122-71-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Della Ca’, Nicola et al. published their research in Tetrahedron in 2015 | CAS: 60666-70-8

(2-Bromo-5-chlorophenyl)methanol (cas: 60666-70-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Safety of (2-Bromo-5-chlorophenyl)methanol

Formation of a carbonyl group ortho to a biaryl structure or a 6H-dibenzopyran by a palladium/norbornene-catalyzed ordered reaction sequence was written by Della Ca’, Nicola;Fontana, Marco;Xu, Di;Cremaschi, Mirko;Lucentini, Riccardo;Zhou, Zhi-Ming;Catellani, Marta;Motti, Elena. And the article was included in Tetrahedron in 2015.Safety of (2-Bromo-5-chlorophenyl)methanol This article mentions the following:

Developments are reported in the catalytic synthesis of biaryls containing an ortho-carbaldehyde or 6H-dibenzopyrans in the presence of palladium/norbornene as catalyst. The reaction of o-substituted aryl iodides and o-bromobenzyl alcs. proceeds by unsym. aryl-aryl coupling to form a seven-membered oxapalladacycle intermediate, which may undergo an intramol. redox process to form carbonyl groups or a C-O coupling to six-membered cyclic ethers. The predominant formation of dibenzopyrans as well as of biaryl structures containing the oxidized CHO group in one ring and the reduced CH2OH in the other is described along with some mechanistic insights. In the experiment, the researchers used many compounds, for example, (2-Bromo-5-chlorophenyl)methanol (cas: 60666-70-8Safety of (2-Bromo-5-chlorophenyl)methanol).

(2-Bromo-5-chlorophenyl)methanol (cas: 60666-70-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Safety of (2-Bromo-5-chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ranoo, Surojit et al. published their research in Journal of Molecular Liquids in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 111-46-6

Tuning magnetic heating efficiency of colloidal dispersions of iron oxide nano-clusters by varying the surfactant concentration during solvothermal synthesis was written by Ranoo, Surojit;Lahiri, B. B.;Damodaran, Shima P.;Philip, John. And the article was included in Journal of Molecular Liquids in 2022.Application of 111-46-6 This article mentions the following:

Magnetic fluid hyperthermia (MFH) is being actively sought as a supplementary cancer therapy, where enhancing the MFH efficiency is essential for reducing dosage and field exposure. Owing to the superior magnetic properties, magnetic nano-clusters (MNCs) are being developed as MFH agents, where the role of synthesis routes, colloidal stability and magneto-structural properties on MFH efficiency requires further attention. In this article, we report the tuning of MFH efficiency of water and diethylene glycol-based magnetic nanofluids containing iron-oxide MNCs of sizes ∼ 125 to 539 nm, obtained by varying the surfactant concentration Magnetite MNCs are prepared via solvothermal route, where the primary nano-crystallite (MNP) size is varied from 7.4 ± 0.7 to 25.0 ± 0.8 nm by reducing the sodium citrate (surfactant) concentration from 29 to 0.29 mg/mL. With decreasing surfactant concentration, the amount of sodium citrate absorbed on the surface of the freshly formed nano-seeds reduces, which lowers the electrostatic stabilization in polar media and favors the growth of larger MNPs that results in comparatively larger MNCs. Transmission electron microscopy and at. force microscopy based studies indicate the monodisperse spherical morphol. of the MNCs, consisting of several primary nano-crystallites. Room temperature isothermal magnetization measurements indicate high saturation magnetization and superparamagnetic nature of the MNCs, which are beneficial for MFH applications. Magneto-calorimetry experiments are performed for the accurate estimation of the MFH efficiency of the colloidal dispersions of the MNCs. Exptl. findings indicate that the heating efficiency increases from 15.24 ±1.22 to 193.8 ± 5.2 W/gFe (i.e., an enhancement of ∼ 12.7 times), at a field exposure condition of 33.1 kA/m and 126 kHz, when the primary nano-crystallite size is increased by ∼ 3.4 times by reducing the surfactant concentration It is observed that the heating efficiency decreases linearly with the logarithm of surfactant concentration in all the cases, which is attributed to the variations in primary nano-crystallite sizes and the resultant magnetic losses. Magneto-calorimetric experiments, using MNCs immobilized in high viscosity agar matrix, indicate insignificant contributions from the whole-scale Brownian relaxation, and the heating efficiency is found to be solely dependent on the magnetic losses of the primary nano-crystallites. With increasing primary nano-crystallite size, augmentation of heating efficiency is due to the increase in magnetization and dynamic coercivity, which is confirmed from theor. calculations using the high frequency hysteresis loops and sweeping rate modified Stoner Wohlfarth model. The obtained results indicate the possibility of tuning hyperthermia efficiency of MNCs by varying the surfactant concentration, which is beneficial for designing colloidally stable dispersions of MNCs with improved MFH efficiency. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Application of 111-46-6).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 111-46-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Tian, Hongyu et al. published their research in Industrial Crops and Products in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Computed Properties of C4H10O3

Self-healing modified liquefied lignocellulosic cross-linked bio-based polymer for controlled-release urea was written by Tian, Hongyu;Zhang, Lina;Sun, Xiao;Cui, Jing;Dong, Jingjing;Wu, Liang;Wang, Yanfeng;Wang, Lingli;Zhang, Min;Liu, Zhiguang;Lu, Panfang. And the article was included in Industrial Crops and Products in 2022.Computed Properties of C4H10O3 This article mentions the following:

Alkali-hydrolyzed lignocellulose was liquefied into polyols by acid-catalyzed dissolution, and then cross-linked with castor oil to prepare bio-based cross-linked polyurethane. Then, bis (2-hydroxyethyl) disulfide (SS) with self-healing function was used to reduce foaming in the curing process of polyurethane coating. Afterwards, disulfide bond modified crosslinked bio-based polyurethane coating (BCSPU) was applied to controlled-release urea (CRU). The results of excitation-emission matrixes indicated that SS made the coating smoother and denser and preventing the release of non-film-forming substances. Crosslinking modification technol. significantly extended the controlled release longevity of CRU by 77.3%, and the self-healing modification further prolonged the nitrogen release longevity by 61.5%. In addition, modified coating materials were non-toxic to wheat seeds and easily biodegradable in the soil. Crosslinking, self-healing modified controlled-release urea has enormous application potential in sustainable agriculture. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Computed Properties of C4H10O3).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Computed Properties of C4H10O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Zhifang et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol

YdfD, a Lysis Protein of the Qin Prophage, Is a Specific Inhibitor of the IspG-Catalyzed Step in the MEP Pathway of Escherichia coli was written by Lu, Zhifang;Wang, Biying;Qiu, Zhiyu;Zhang, Ruiling;Zheng, Jimin;Jia, Zongchao. And the article was included in International Journal of Molecular Sciences in 2022.Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol This article mentions the following:

Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiol., such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Obach, Ronald Scott et al. published their research in Xenobiotica in 2016 | CAS: 142253-56-3

1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 1-Boc-Azetidine-3-yl-methanol

Strategies toward optimization of the metabolism of a series of serotonin-4 partial agonists: investigation of azetidines as piperidine isosteres was written by Obach, Ronald Scott;LaChapelle, Erik A.;Brodney, Michael A.;Vanase-Frawley, Michelle;Kauffman, Gregory W.;Sawant-Basak, Aarti. And the article was included in Xenobiotica in 2016.Recommanded Product: 1-Boc-Azetidine-3-yl-methanol This article mentions the following:

The first generation 5HT-4 partial agonist, 4-{4-[4-Tetrahydrofuran-3-yloxy-benzo[d]isoxazol-3-yloxymethyl]-piperidin-1-ylmethyl}-tetrahydropyran-4-ol, PF-4995274 (TBPT), was metabolized to N-dealkylated (M1) and an unusual, cyclized oxazolidine (M2) metabolites. and demonstrated pharmacol. activity at 5HT receptor subtypes warranting further investigation into their dispositional properties in humans; was a minor component in vitro but was the pre-dominant metabolite identified in human plasma. To shift metabolism away from the piperidine ring of TBPT, a series of heterocyclic replacements were designed, synthesized, and profiled. Groups including azetidines, pyrrolidines, as well as functionalized piperidines were evaluated with the goal of identifying an alternative group that maintained the desired potency, functional activity, and reduced turnover in human hepatocytes. Activities of 4-substituted piperidines or pyrrolidine analogs at the pharmacol. target were not significantly altered, but the same metabolic pathways of N-dealkylation and oxazolidine formation were still observed Altering these to bridged ring systems lowered oxazolidine metabolite formation, but not N-dealkylation. The effort concluded with identification of azetidines as second-generation 5HT4 partial agonists. These were neither metabolized via N-dealkylation nor converted to cyclized oxazolidine metabolites rather oxidized on the isoxazole ring. The use of azetidine as a replacement for aliphatic aza-heterocyclic rings in drug design to alter drug metabolism and pharmacol. is discussed. In the experiment, the researchers used many compounds, for example, 1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3Recommanded Product: 1-Boc-Azetidine-3-yl-methanol).

1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 1-Boc-Azetidine-3-yl-methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Meng-Lund, Helena et al. published their research in International Journal of Pharmaceutics (Amsterdam, Netherlands) in 2019 | CAS: 10030-85-0

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Exploring the chemical space for freeze-drying excipients was written by Meng-Lund, Helena;Holm, Tobias Palle;Poso, Antti;Jorgensen, Lene;Rantanen, Jukka;Grohganz, Holger. And the article was included in International Journal of Pharmaceutics (Amsterdam, Netherlands) in 2019.Category: alcohols-buliding-blocks This article mentions the following:

Commonly, a limited number of generally accepted bulking agents and lyoprotectants are used for freeze-drying; predominantly mannitol, glycine, sucrose and trehalose. The purpose of this study was to combine a theor. approach using mol. descriptors with a large scale exptl. screening to evaluate the suitability of a broad range of excipients for freeze-drying. A large selection of sugars, polyols and amino acids was characterized by modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD) after well-plate based freeze-drying. The calculated mol. descriptors were investigated with both hierarchical cluster anal. and principal component anal. A clear clustering of the excipients according to the size-related and weight-related descriptors was observed; however other relevant descriptors could also be identified. From a practical perspective, a trend was observed with regard to a higher likelihood for amorphization and a higher glass transition temperature of the maximally freeze-concentrated solution with increasing mol. size. A translation of the mol. descriptors on pharmaceutical performance was more successful for lyoprotectants than for bulking agents. Addnl., in the course of the exptl. screening, several new potential bulking agents and lyoprotectants were identified. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Category: alcohols-buliding-blocks).

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Berkessel, Albrecht et al. published their research in Organometallics in 2011 | CAS: 863659-89-6

(S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol (cas: 863659-89-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application In Synthesis of (S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol

Light-induced enantioselective hydrogenation using chiral derivatives of Casey’s iron-cyclopentadienone catalyst was written by Berkessel, Albrecht;Reichau, Sebastian;von der Hoeh, Adrian;Leconte, Nicolas;Neudorfl, Joerg-M.. And the article was included in Organometallics in 2011.Application In Synthesis of (S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol This article mentions the following:

Iron cyclopentadienone half-sandwich complexes I [8ae; R = H, Me, Ph, 2-naphthyl, 3,5-(CF3)2C6H3] and an (R)-enantiomer of 8a, ent-8a, containing chiral (S)- and (R)-MonoPhos ligands, chirally modified Casey’s catalysts, were prepared by Me3NO- or photolysis-induced substitution of the parent tricarbonyl complex, [[η4-O(CH2)2(C:CSiMe3)2C:O]Fe(CO)3] (7) with the chiral phosphoramidite ligands. Crystal structures of 8a and 8c were determined The complexes 8ae and ent-8a catalyze asym. hydrogenation of acetophenone into (S)- and (R)-1-phenylethanol, resp., with 90% yields and up to 32% ee, the reaction being induced by UV irradiation Photolysis was also used to convert the dicarbonyl phosphoramidite complexes 8 to the coordinatively unsaturated monocarbonyl complexes, which are intermediates in the catalytic cycle of ketone hydrogenation. Hydrogen uptake by the latter species affords the “loaded” diastereomeric hydrides [[η5-O(CH2)2(C:CSiMe3)2COH]Fe(CO)(L*)] [10, 11; L* = unsubstituted (S)-MonoPhos] and an achiral hydride [[η5-O(CH2)2(C:CSiMe3)2COH]Fe(CO)2] (6), as evidenced by 1H NMR spectroscopy. Thus, the preparation of sensitive iron hydrides by the typically low-yielding Hieber reaction could be avoided. Instead, the catalytic cycle is accessed from air-stable carbonyl precursors. In the hydridic form of the phosphoramidite-carbonyl catalysts, the iron atom itself becomes a stereocenter. NMR spectroscopy confirmed the generation of two hydride diastereomers. With the MonoPhos iron dicarbonyl complex, moderate enantioselectivity (up to 31% ee) was achieved in the hydrogenation of acetophenone. In the experiment, the researchers used many compounds, for example, (S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol (cas: 863659-89-6Application In Synthesis of (S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol).

(S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol (cas: 863659-89-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application In Synthesis of (S)-[2,3′:1′,1”:3”,2”’-Quaternaphthalene]-2′,2”-diol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Wei-Peng et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2015 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Related Products of 120121-01-9

Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts was written by Liu, Wei-Peng;Yuan, Ming-Lei;Yang, Xiao-Hui;Li, Ke;Xie, Jian-Hua;Zhou, Qi-Lin. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2015.Related Products of 120121-01-9 This article mentions the following:

Highly efficient iridium catalyzed asym. transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts, a series of alkyl aryl ketones were hydrogenated to chiral alcs. with up to 98% ee. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Related Products of 120121-01-9).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Related Products of 120121-01-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts