Ceylan, ule et al. published their research in BioResources in 2022 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C10H22O

Chemical composition, antimicrobial, and antioxidant activities of medicinal plants nutsedge and fenugreek was written by Ceylan, ule;Camadan, Yasemin;Saral, Ozlem;Batur, Ozge Ozuleen. And the article was included in BioResources in 2022.Electric Literature of C10H22O The following contents are mentioned in the article:

Purple nutsedge roots (Cyperus rotundus L.) and fenugreek seeds (Trigonella foenum-graecum L.) have been traditionally used as food and to treat common ailments. After extraction by solid-phase microextraction (SPME), the chem. structure of the revealed volatile fractions was researched with gas chromatog. with mass spectrometry (GC-MS). The determined substances of the C. rotundus were pentadecanolide (72.0%), palmitic acid (8.2%), 16-hydroxy-6-hexadecenoic acid omega lactone (4.4%), and (Z)-anethol (3.9%). Most of the identified compounds of the T. foenum-graecum were pentadecanolide (61.3%) and (Z)-anethol (16.5%). The C. rotundus showed good antifungal activity against the yeast strands of Candida albicans and Candida krusei. Min. inhibitory concentration (MIC) numbers were 250 and 125 μg/mL, resp. However, the T. foenum-graecum seeds did not show any effect against the test microorganisms. The C. rotundus roots in particular exhibited good 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with an IC50 number of 0.91 mg/mL. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Electric Literature of C10H22O).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C10H22O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Baba, Teruhiko et al. published their research in Chemistry and Physics of Lipids in 2020 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Category: alcohols-buliding-blocks

Effect of the fluorination degree of partially fluorinated octyl-phosphocholine surfactants on their interfacial properties and interactions with purple membrane as a membrane protein model was written by Baba, Teruhiko;Takagi, Toshiyuki;Sumaru, Kimio;Kanamori, Toshiyuki. And the article was included in Chemistry and Physics of Lipids in 2020.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Interfacial properties and membrane protein solubilization activity of a series of partially fluorinated octyl-phosphocholine (PC) surfactants were investigated from the viewpoint of the fluorination degree of the hydrophobic chain. The critical micelle concentration (CMC), surface tension lowering activity, mol. occupied area at the CMC and free energy changes of micellization as well as adsorption to the air-water interface for each PC surfactant were estimated from surface tension measurements at 25 °C. The PCs with higher degree of fluorination exhibited low CMC and high surface activity, while the single trifluoromethyl group at the end of the chain appeared to enhance the hydrophilicity of the surfactant mol. Under conditions where conventional short-chain surfactants, n-octyl-β-D-glucoside, Triton X-100 and dioctanoylphosphatidylcholine significantly solubilize purple membranes (PM), none of the fluorinated-PCs solubilized PM. This suggests that fluorinated-PCs are low-invasive enough to maintain the structure of lipids/protein assemblies like PM. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Category: alcohols-buliding-blocks).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Baute-Perez, David et al. published their research in Food Chemistry in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C13H12O2

Analysis of alkylphenols, bisphenols and alkylphenol ethoxylates in microbial-fermented functional beverages and bottled water: Optimization of a dispersive liquid-liquid microextraction protocol based on natural hydrophobic deep eutectic solvents was written by Baute-Perez, David;Santana-Mayor, Alvaro;Herrera-Herrera, Antonio V.;Socas-Rodriguez, Barbara;Rodriguez-Delgado, Miguel Angel. And the article was included in Food Chemistry in 2022.Electric Literature of C13H12O2 The following contents are mentioned in the article:

In this work, the anal. of alkylphenols, bisphenols and alkylphenol ethoxylates in bottled waters, kombuchas and water kefir was performed through a vortex-assisted dispersive liquid-liquid microextraction method based on a natural hydrophobic eutectic solvent. For this purpose, mixtures of monoterpenes and fatty acids were employed. Different factors affecting extraction were optimized and the method was validated in terms of matrix effect, linearity, limits of detection and recovery. Recovery values varied between 70.0 and 124.3% (except for 4-tert-butylphenol: 67.0% and 4-n-nonylphenol: 60.8% in water kefir) and limits of detection were in the range 0.10 ng/L – 2.99μg/L. Finally, 8 bottled waters, 8 kombuchas and 4 water kefirs were analyzed and 4-tert-octylphenol monoethoxylate was detected in water (20.28 ± 0.99 – 62.08 ± 3.63μg/L). This is the first application analyzing xenobiotic contaminants in kombucha and water kefir and the first time in which the three types of compounds are simultaneously extracted by dispersive liquid-liquid microextraction This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Electric Literature of C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chylewska, Agnieszka et al. published their research in Journal of Coordination Chemistry in 2015 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Spectrophotometric, potentiometric, and conductometric studies of binary complex formation between copper(II) and three forms of vitamin B6 in aqueous solutions was written by Chylewska, Agnieszka;Ogryzek, Malgorzata;Chmurzynski, Lech;Makowski, Mariusz. And the article was included in Journal of Coordination Chemistry in 2015.Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride The following contents are mentioned in the article:

This article reports the detailed study concerning the mode of binding of three forms of vitamin B6, pyridoxamine (pm), pyridoxine (pn), and pyridoxal (pl), with Cu(II) in aqueous solutions using three independent methods: potentiometry, conductometry, and UV-vis spectroscopy. The stability constants of complexes formed between copper(II) and vitamin B6 were investigated by potentiometric titration in 0.1 M KNO3 ionic medium at 25 °C. While drawing the relations between molar conductance and the ratio of metal to ligand concentrations, different types of lines were obtained indicating the formation of 1:1 and 1:2 stoichiometric compounds The stability constants have been determined using EQUID and CVEQUID computer programs and the obtained results were in agreement. The relatively high values of stability constants of Cu(II)-vitamin B6 complexes obtained from three independent methods in comparison to those with other competing cations suggest that the complexes studied are relatively stable in aqueous solutions This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ren, Yongfang et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Antioxidant activity, stability, in vitro digestion and cytotoxicity of two dietary polyphenols co-loaded by β-lactoglobulin was written by Ren, Yongfang;Liu, He;Wang, Danfeng;Liu, Tingting;Zhang, Ruiyan;Wu, Yushu;Zhang, Yongfang;Han, Jun;Liu, Min. And the article was included in Food Chemistry in 2022.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

The combination of multiple dietary polyphenols may have synergistic beneficial effects. And the beneficial effects can be further improved by the encapsulation of proteins. The interactions of procyanidin B2 (PB2) and/or dihydromyricetin (DMY) with β-lactoglobulin (β-LG) were investigated using multi-spectroscopic techniques and mol. docking. The structural change of β-LG in the presence of PB2 and/or DMY was demonstrated by dynamic light scattering, Fourier transform IR spectroscopy and CD spectroscopy. Response surface anal. was used to optimize the synergistic antioxidant activity between PB2 and DMY. Besides, the antioxidant activity, stability, in vitro digestion and cytotoxicity of PB2 and DMY in the binary and ternary systems were investigated. These studies will elucidate the interaction mechanism of PB2 and/or DMY with β-LG. The research results can provide theor. support for the development of functional foods and beverages with synergistic activity, improved stability and bioaccessibility, thereby promoting human health and preventing diseases. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zlatanovic, Ivana et al. published their research in Natural Product Communications in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 29106-49-8

Comprehensive Analysis of the Herbal Mixture Made of Juniperus oxycedrus L. Berries, Inner Bark of Betula pendula Roth., and Grains of Avena sativa L. was written by Zlatanovic, Ivana;Stankovic, Miroslava;Ickovski, Jovana;Dimitrijevic, Ivana;Stojanovic, Gordana. And the article was included in Natural Product Communications in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

This is the first report of the high-performance liquid chromatog. and gas chromatog.-mass spectrometry profile of a herbal mixture (HM) made of Juniperus oxycedrus L. (redberry juniper) berries, inner bark of Betula pendula Roth. (silver birch), and grains of Avena sativa L. (oat), and its effect on the Number of micronuclei (MN) in human lymphocytes and toxicity toward Artemia salina. Constituents represented by over 1000μg per g of methanol dry extract were gallic acid, protocatechuic acid, and amentoflavone. The methanol extract of the HM at a concentration of 2.0μg/mL decreased MN frequency by 38.3%, which was more than 3 times greater than that of the radioprotectant amifostine. The essential oil isolated from the HM was composed mainly of β-myrcene (32%) and showed weaker toxicity toward Artemia salina than the pos. control after both incubation periods (24 h and 48 h). These findings suggest that the examined HM, beside its ethnopharmacol. relevance on the elimination of renal calculi, also significantly reduces the Number of MN in human lymphocytes. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mildner-Szkudlarz, Sylwia et al. published their research in Plant Foods for Human Nutrition in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 29106-49-8

Nε-(carboxymethyl)lysine, Available Lysine, and Volatile Compound Profile of Biscuits Enriched with Grape by-Product During Storage was written by Mildner-Szkudlarz, Sylwia;Siger, Aleksander;Przygonski, Krzysztof;Radziejewska-Kubzdela, Elzbieta;Zawirska-Wojtasiak, Renata. And the article was included in Plant Foods for Human Nutrition in 2022.SDS of cas: 29106-49-8 The following contents are mentioned in the article:

We investigated the changes in Nε-(carboxymethyl)lysine (CML) and available lysine content, antioxidant properties, volatiles, and oxidation products of biscuits enriched with grape byproduct (GP), stored for six months under a modified atm. of 0%/30%/70% O2/CO2/N2 and in air. Fresh GP-formulated biscuits showed lower concentrations of CML (89%), available lysine (40%), and pyrazines (75%), but higher antioxidant capacities (∼ sixfold), furans (12-fold), and lipid-derived compounds (three-fold) than the control. Although ∼ 15% higher losses of Maillard-type volatiles were identified in the air atm. during storage, lipid oxidation was ∼ 30% less pronounced in the modified atm. A significant correlation of 0.994 between the reduction in CML and the available lysine suggest further CML reactions with the ε-NH2 group of amino acids. Significant correlations (of -0.550 to -0.980) between oxidation products, antioxidant capacities, and changes in CML content during storage suggest that these parameters might be involved in the CML elimination mechanism. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Siqueira, Josieli D. et al. published their research in Polyhedron in 2017 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Reference of 65-22-5

Synthesis, characterization and phosphatase inhibitory activity of dioxidovanadium(V) complexes with Schiff base ligands derived from pyridoxal and resorcinol was written by Siqueira, Josieli D.;Menegatti, Angela C. O.;Terenzi, Hernan;Pereira, Mateus B.;Roman, Daiane;Rosso, Eduardo F.;Piquini, Paulo C.;Iglesias, Bernardo A.;Back, Davi F.. And the article was included in Polyhedron in 2017.Reference of 65-22-5 The following contents are mentioned in the article:

In this manuscript, we report the synthesis of dioxidovanadium(V) complexes, their identification by spectroscopic and electrochem. methods, the structural characterization by X-ray diffraction and d. functional theory calculations, as well as their in vitro inhibitory activity of protein tyrosine phosphatases (PTPs). The structural anal. revealed the formation of dianionic complexes with [VO2]2+ species in compounds 1, [VO2(L1)]2[Et3NH]2 and 2, [VO2]2(L2)[(DBU-H)]2 (H2L1 = 2,4-(dihydroxyphenyl)ethylidene)benzohydrazide and H4L2 = bis[(3-hydroxy-5-(hydroxymethyl)-2methylpyridin-4-yl)methylene]oxalohydrazide. The mol. frontier orbitals of dioxidovanadium(V) complexes are characterized and compared. Furthermore, the enzymic experiments revealed that complex 1 inhibited at least two of the PTPs evaluated with potent activity (IC50 = 1.5 μM). This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Reference of 65-22-5).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Reference of 65-22-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kazim, Alia Rizvi Syeda et al. published their research in Microbiology Spectrum in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 367-93-1

Aspergillus nidulans AmyG functions as an intracellular α-amylase to promote α-glucan synthesis was written by Kazim, Alia Rizvi Syeda;Jiang, Yuting;Li, Shengnan;He, Xiaoxiao. And the article was included in Microbiology Spectrum in 2021.Reference of 367-93-1 The following contents are mentioned in the article:

α-Glucan is a major cell wall component and a virulence and adhesion factor for fungal cells. However, the biosynthetic pathway of α-glucan was still unclear. α-Glucan was shown to be composed mainly of 1,3-glycosidically linked glucose, with trace amounts of 1,4-glycosidically linked glucose. Besides the α-glucan synthetases, amylase-like proteins were also important for α-glucan synthesis. In our previous work, we showed that Aspergillus nidulans AmyG was an intracellular protein and was crucial for the proper formation of α-glucan. In the present study, we expressed and purified AmyG in an Escherichia coli system. Enzymic characterization found that AmyG mainly functioned as an α-amylase that degraded starch into maltose. AmyG also showed weak glucano-transferase activity. Most intriguingly, supplementation with maltose in shaken liquid medium could restore the α-glucan content and the phenotypic defect of a ΔamyG strain. These data suggested that AmyG functions mainly as an intracellular α-amylase to provide maltose during α-glucan synthesis in A. nidulans. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Reference of 367-93-1).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 367-93-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Balakrishnan, M. et al. published their research in Research Journal of Biotechnology in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Electric Literature of C9H18O5S

Comparative Molecular docking analysis of Target fruit ripening enzyme Tomato Beta galactosidase (TBG-4) was written by Balakrishnan, M.;Supriya, P.;Soam, S. K.;Srinivasa, Rao CH.;Sumalatha, K.. And the article was included in Research Journal of Biotechnology in 2022.Electric Literature of C9H18O5S The following contents are mentioned in the article:

Tomatoes comprise a high level of TBG4 (Tomato Beta galactosidase-4) enzyme activity that plays a key role in fruit softening by significant changes in the galactosyl content in the pericarp cell wall. In the present work, in silico docking studies of beta galactosidase with specific elucidated ligands were carried out. For the better understanding of protein ligand interactions, a set of 16 ligands were used for docking studies. In the present study, two different comparative docking softwares, Autodock4.0 and iGEMDOCK were used to study the protein-ligand interactions and performed to get the best docking scores. PLIP software was used for visualization of protein ligand complex and their interactions. Binding energies of 16 ligands were predicted among which 5 ligands 151, 2FL, B2G, EPE and LAT were analyzed and confirmed as best ligands. Among them 151(2S)-3-Methyl-2-(2R,3S)-3-[(Mehtylsulfonyl)amino]-1-[2-(Pyrolidin-1-ylmethyl)-1,3-Oxazol-4yl] Butanoic acid is the best inhibitor of TBG4 enzyme activity leading to significant enhancement in fruit shelf life. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Electric Literature of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Electric Literature of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts