Oulkar, Dasharath et al. published their research in Journal of Food Science and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Synthetic Route of C30H26O12

Characterization of different parts of litchi fruit using UHPLC-QExactive Orbitrap was written by Oulkar, Dasharath;Singh, Kirti;Narayan, Bhaskar. And the article was included in Journal of Food Science and Technology in 2022.Synthetic Route of C30H26O12 The following contents are mentioned in the article:

Litchi fruit is consumed across the globe for its high nutritional value and taste. The qual. profiling of litchi fruit has been carried out by using ultra-high-performance liquid chromatog. with QExactive high-resolution accurate mass spectrometry. Acidified water: methanol: acetonitrile (1:1:1) extracts from individual parts (skin, pulp, and seed) of matured litchi, were subjected to LC-MS anal. with electrospray ionization in full MS-ddMS2 mode as a non-target approach. The data was processed through compound discoverer software by the use of mzCloud and ChemSpider databases, for compound identification. We identified 77 compounds with protonated or deprotonated forms based on the polarity and their characteristic fragments are within ± 4 ppm mass error and retention time ± 0.1 min for parent and fragments. Hypoglycin B is the first time reported in litchi fruit along with hypoglycin A. Further, we verified the distribution of the identified components and differentiation of three different parts of litchi through principal component anal. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Synthetic Route of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Synthetic Route of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Suslov, Evgenii V. et al. published their research in RSC Medicinal Chemistry in 2020 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of 3,7-Dimethyloctan-1-ol

New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections was written by Suslov, Evgenii V.;Mozhaytsev, Evgenii S.;Korchagina, Dina V.;Bormotov, Nikolay I.;Yarovaya, Olga I.;Volcho, Konstantin P.;Serova, Olga A.;Agafonov, Alexander P.;Maksyutov, Rinat A.;Shishkina, Larisa N.;Salakhutdinov, Nariman F.. And the article was included in RSC Medicinal Chemistry in 2020.Quality Control of 3,7-Dimethyloctan-1-ol The following contents are mentioned in the article:

Currently, the spectrum of agents against orthopoxviruses, in particular smallpox, is very narrow. Despite the fact that smallpox is well controlled, there is, for many reasons, a real threat of epidemics associated with this or a similar virus. In order to search for new low mol. weight orthopoxvirus inhibitors, a series of amides combining adamantane and monoterpene moieties were synthesized using 1- and 2-adamantanecarboxylic acids as well as myrtenic, citronellic and camphorsulfonic acids as acid components. The produced compounds exhibited high activity against the vaccinia virus (an enveloped virus belonging to the poxvirus family), which was combined with low cytotoxicity. Some compounds had a selectivity index higher than that of the reference drug cidofovir; the highest SI = 1123 was exhibited by 1-adamantanecarboxylic acid amide containing the (-)-10-amino-2-pinene moiety. The produced compounds demonstrated inhibitory activity against other orthopoxviruses: cowpox virus (SI = 30-406) and ectromelia virus (mousepox virus, SI = 39-707). This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Quality Control of 3,7-Dimethyloctan-1-ol).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of 3,7-Dimethyloctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Fang-Ru et al. published their research in Beilstein Journal of Organic Chemistry in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Name: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Efficient production of clerodane and ent-kaurane diterpenes through truncated artificial pathways in Escherichia coli was written by Li, Fang-Ru;Lin, Xiaoxu;Yang, Qian;Tan, Ning-Hua;Dong, Liao-Bin. And the article was included in Beilstein Journal of Organic Chemistry in 2022.Name: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

The clerodane and ent-kaurane diterpenoids are two typical categories of diterpenoid natural products with complicated polycyclic carbon skeletons and significant pharmacol. activities. Despite exciting advances in organic chem., access to these skeletons is still highly challenging. Using synthetic biol. to engineer microbes provides an innovative alternative to bypass synthetic challenges. In this study, we constructed two truncated artificial pathways to efficiently produce terpentetriene and ent-kaurene, two representative clerodane and ent-kaurane diterpenes, in Escherichia coli. Both pathways depend on the exogenous addition of isoprenoid alc. to reinforce the supply of IPP and DMAPP via two sequential phosphorylation reactions. Optimization of these constructs provided terpentetriene and ent-kaurene titers of 66 ± 4 mg/L and 113 ± 7 mg/L, resp., in shake-flask fermentation The truncated pathways to overproduce clerodane and ent-kaurane skeletons outlined here may provide an attractive route to prepare other privileged diterpene scaffolds. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Name: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Name: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yu, Zhendong et al. published their research in Journal of Colloid and Interface Science in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of 4,4′-Methylenediphenol

Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants was written by Yu, Zhendong;Ma, Jiachen;Huang, Xiaoyi;Lv, Yuancai;Liu, Yifan;Lin, Chunxiang;Dou, Rongni;Ye, Xiaoxia;Shi, Yongqian;Liu, Minghua. And the article was included in Journal of Colloid and Interface Science in 2022.Quality Control of 4,4′-Methylenediphenol The following contents are mentioned in the article:

In this study, the S modified iron-based catalyst (S-Fe@C) for activating peroxydisulfate (PDS) was fabricated by heating the S-MIL-101 (Fe) precursor at 800°C. The resulted S-Fe@C composite mainly consisted of carbon, Fe0, FeS, FeS2, and Fe3O4, and showed strong magnetism. Compared with Fe@C obtained from MIL-101 (Fe), the S-Fe@C exhibited much higher performance (1.5 times larger) on PDS activation and the S-Fe@C/PDS could rapidly degrade various organic pollutants in 5 min under the attack of the species of SO4·, 1O2, electro-transfer and Fe(IV). The S element in enhancing the PDS activation mainly involved two mechanisms. Firstly, the doped S could speed up the electron transfer efficiency, resulting in a promotion on PDS decomposition; secondly, the S2- S22- or S0 could achieve the circulation of Fe2+ and Fe3+, leading to the formation of non-radicals Fe(IV) and 1O2. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Quality Control of 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mustafa, Ahmed M. et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity was written by Mustafa, Ahmed M.;Angeloni, Simone;Abouelenein, Doaa;Acquaticci, Laura;Xiao, Jianbo;Sagratini, Gianni;Maggi, Filippo;Vittori, Sauro;Caprioli, Giovanni. And the article was included in Food Chemistry in 2022.Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Berry fruits consumption has increased in recent years because they are rich sources of polyphenols with reported health benefits. The aim of the present work was to develop a new comprehensive and fast HPLC-MS/MS method for simultaneous determination of 36 phenolic compounds (7 anthocyanins, 9 flavonols, 4 flavan-3-ols, 2 dihydrochalcones, 2 flavanones and 12 phenolic acids) present in blueberry, strawberry, and their fruit jam. Blueberry fruits showed higher contents of anthocyanins, flavonols and phenolic acids, while strawberry fruits exhibited higher contents of flavan-3-ols, dihydrochalcones and flavanones. Anthocyanins were the main phenolic constituents in both berries. Furthermore, the higher total phenolic content in the blueberry fruit and jam justified their greater antioxidant capacity measured by DPPH free radical assay, compared to strawberry. In conclusion, this new HPLC-MS/MS method is useful and reliable for quality control and authentication analyses of blueberry and strawberry fruits and their com. food products, such as jams. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cheng, Keman et al. published their research in Nature Communications in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology was written by Cheng, Keman;Zhao, Ruifang;Li, Yao;Qi, Yingqiu;Wang, Yazhou;Zhang, Yinlong;Qin, Hao;Qin, Yuting;Chen, Long;Li, Chen;Liang, Jie;Li, Yujing;Xu, Jiaqi;Han, Xuexiang;Anderson, Gregory J.;Shi, Jian;Ren, Lei;Zhao, Xiao;Nie, Guangjun. And the article was included in Nature Communications in 2021.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

An effective tumor vaccine vector that can rapidly display neoantigens is urgently needed. Outer membrane vesicles (OMVs) can strongly activate the innate immune system and are qualified as immunoadjuvants. Here, we describe a versatile OMV-based vaccine platform to elicit a specific anti-tumor immune response via specifically presenting antigens onto OMV surface. We first display tumor antigens on the OMVs surface by fusing with ClyA protein, and then simplify the antigen display process by employing a Plug-and-Display system comprising the tag/catcher protein pairs. OMVs decorated with different protein catchers can simultaneously display multiple, distinct tumor antigens to elicit a synergistic antitumor immune response. In addition, the bioengineered OMVs loaded with different tumor antigens can abrogate lung melanoma metastasis and inhibit s.c. colorectal cancer growth. The ability of the bioengineered OMV-based platform to rapidly and simultaneously display antigens may facilitate the development of these agents for personalized tumor vaccines. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cabarkapa, Ivana et al. published their research in Biofouling in 2019 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 106-21-8

Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis was written by Cabarkapa, Ivana;Colovic, Radmilo;Djuragic, Olivera;Popovic, Sanja;Kokic, Bojana;Milanov, Dubravka;Pezo, Lato. And the article was included in Biofouling in 2019.Application of 106-21-8 The following contents are mentioned in the article:

The aim of the present study was to determine the bioactive compounds in four essential oils (EO’s) from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris and Thymus serpyllum and to assess their antimicrobial and anti-biofilm activity against Salmonella Enteritidis. Strains were previously characterized depending on the expression of the extracellular matrix components cellulose and curli fimbriae as rdar (red, dry and rough) and bdar morphotype (brown, dry and rough). This study revealed that the EO’s and EOC’s (carvacrol and thymol) investigated showed inhibition of biofilm formation at sub-min. inhibitory concentration Comparing the efficacy of EO’s and EOC’s in the inhibition of biofilm formation between the strains with different morphotype (rdar and bdar) did not show a statistically significant difference. Results related to the effectiveness of EO’s and EOC’s (the essential oil components, carvacrol and thymol) on eradication of preformed 48 h old biofilms indicated that biofilm reduction occurred in a dose-dependent manner over time. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Application of 106-21-8).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 106-21-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Yuxing et al. published their research in Food Chemistry: X in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 29106-49-8

Comparative elucidation of bioactive and volatile components in dry mature jujube fruit (Ziziphus jujuba Mill.) subjected to different drying methods was written by Liu, Yuxing;Liao, Yaxuan;Guo, Minrui;Zhang, Weida;Sang, Yueying;Wang, Hai;Cheng, Shaobo;Chen, Guogang. And the article was included in Food Chemistry: X in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

This study investigated the effects of convective drying(CD) and freeze drying(FD) on bioactive and volatile components in jujube. No significant difference in total phenolic, total flavonoids and antioxidant capacity among CD60, CD70, CD80 and FD samples (P > 0.05). LC-MS/MS anal. showed that this trend mainly originated from the dynamic equilibrium relationships between caffeic acid, chlorogenic acid, p-hydroxybenzoic acid, rutin, epicatechin, and quercetin. HS-SPME-GC-MS identified 31 volatile organic compounds (VOCs) comprising more than 80% aldehydes and acids. Principal component anal. distinguished the VOC characteristics of samples subjected to different drying methods. Six VOCs had an odor activity value (OAV) >1, most of which were fatty acid oxidation or Maillard reaction products. Combined with the precursor components, these reactions were speculated to be the major VOC-producing pathways in dried jujube. Considering the bioactive components and flavor retention, CD at 60°C was an effective drying method with potential to replace FD. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rinaldo, Dominique et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Browning susceptibility of new hybrids of yam (Dioscorea alata) as related to their total phenolic content and their phenolic profile determined using LC-UV- MS was written by Rinaldo, Dominique;Sotin, Helene;Petro, Dalila;Le-Bail, Gildas;Guyot, Sylvain. And the article was included in LWT–Food Science and Technology in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

In the French West Indies, to cope with the yam disease anthracnose, new hybrids were selected for their resistance to this disease. However, some of them have quality flaws. The new hybrids of Dioscorea alata exhibited contrasted susceptibility to browning in relation to their total phenolic content (r = 0.91). The detailed polyphenol profiles of “INRA15”, highly susceptible to browning, and of “Kabusah”, with moderate susceptibility to this flaw, were achieved by HPLC coupled to UV-Visible and mass spectrometry. For the first time, total procyanidins of yam were finely characterized and quantified using HPLC after phloroglucinolysis, revealing that those compounds are by far the main polyphenols in the two cultivars. Differences in terms of browning susceptibilities of the two cultivars are clearly explained by their contrasted polyphenol profiles: (i) absence vs. presence of catechin which is a substrate of polyphenol oxidase (PPO). – (ii) significant differences in procyanidin levels and in their average d.p. potentially involved in PPO inhibition. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Oh, Chamteut et al. published their research in Applied and Environmental Microbiology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 29106-49-8

Inactivation mechanism and efficacy of grape seed extract for human norovirus surrogate was written by Oh, Chamteut;Chowdhury, Ratul;Samineni, Laxmicharan;Shisler, Joanna L.;Kumar, Manish;Nguyen, Thanh H.. And the article was included in Applied and Environmental Microbiology in 2022.Application of 29106-49-8 The following contents are mentioned in the article:

Proper disinfection of harvested food and water is critical to minimize infectious disease. Grape seed extract (GSE), a commonly used health supplement, is a mixture of plant-derived polyphenols. Polyphenols possess antimicrobial and antifungal properties, but antiviral effects are not well-known. Here we show that GSE outperformed chem. disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. GSE induced virus aggregation, a process that correlated with a decrease in virus titers. This aggregation and disinfection were not reversible. Mol. docking simulations indicate that polyphenols potentially formed hydrogen bonds and strong hydrophobic interactions with specific residues in viral capsid proteins. Together, these data suggest that polyphenols phys. associate with viral capsid proteins to aggregate viruses as a means to inhibit virus entry into the host cell. Plant-based polyphenols like GSE are an attractive alternative to chem. disinfectants to remove infectious viruses from water or food. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts