Peng, Yanli et al. published their research in International Journal of Nanomedicine in 2019 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 923-61-5

Preparation of nanobubbles modified with a small-molecule CXCR4 antagonist for targeted drug delivery to tumors and enhanced ultrasound molecular imaging was written by Peng, Yanli;Zhu, Lianhua;Wang, Luofu;Liu, Yu.;Fang, Kejing;Lan, Minmin;Shen, Daijia;Liu, Deng;Yu, Zhiping;Guo, Yanli. And the article was included in International Journal of Nanomedicine in 2019.SDS of cas: 923-61-5 The following contents are mentioned in the article:

Purpose: To construct nanobubbles (PTX-AMD070 NBs) for targeted delivery of paclitaxel (PTX) and AMD070, examine their performance in ultrasound mol. imaging of breast cancer and cervical cancer and their therapeutic effect combined with ultrasound targeted nanobubble destruction (UTND). PTX-AMD070 NBs were prepared via an amide reaction, and the particle size, zeta potential, encapsulation rate and drug loading efficiency were examined Laser confocal microscopy and flow cytometry were used to analyze the targeted binding ability of PTX-AMD070 NBs to CXCR4+ MCF-7 cells and C33a cells. The effect of PTXAMD070 NBs combined with UTND on cell proliferation inhibition and apoptosis induction was detected by CCK-8 assays and flow cytometry. The contrast-enhanced imaging features of PTX-AMD070 NBs and paclitaxel-loaded nanobubbles were compared in xenograft tumors. The penetration ability of PTX-AMD070 NBs in xenograft tissues was evaluated by immunofluorescence. The therapeutic effect of PTX-AMD070 NBs combined with UTND on xenograft tumors was assessed. PTX-AMD070 NBs showed a particle size of 494.3±61.2 nm, a zeta potential of -22.4±1.75 mV, an encapsulation rate with PTX of 53.73±7.87%, and a drug loading efficiency with PTX of 4.48±0.66%. PTX-AMD070 NBs displayed significantly higher targeted binding to MCF-7 cells and C33a cells than that of PTX NBs (P<0.05), and combined with UTND manifested a more pronounced effect in inhibiting cell proliferation and promoting apoptosis than other treatments. PTX-AMD070 NBs aggregated specifically in xenograft tumors in vivo, and significantly improved the image quality. Compared with other treatment groups, PTX-AMD070 NBs combined with UTND exhibited the smallest tumor volume and weight, and the highest degree of apoptosis and necrosis. PTX-AMD070 NBs improved the ultrasound imaging effect in CXCR4+ xenograft tumors and facilitated targeted therapy combined with UTND. Therefore, this study provides an effective method for the integration of ultrasound mol. imaging and targeted therapy of malignant tumors. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5SDS of cas: 923-61-5).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 923-61-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yang, Shu-Sheng et al. published their research in Phytomedicine in 2021 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Bushen-Huatan-Yizhi formula reduces spatial learning and memory challenges through inhibition of the GSK-3β/CREB pathway in AD-like model rats was written by Yang, Shu-Sheng;Shi, He-Yuan;Zeng, Peng;Xia, Jing;Wang, Ping;Lin, Li. And the article was included in Phytomedicine in 2021.Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

There is an increase in cases of Alzheimers disease (AD) stemming from a globally ageing population demog. Although substantial research efforts were performed for the scope of prophylaxis and therapeutic measure development against AD, based on its pathogenesis, most were unsuccessful. Bushen-Huatan-Yizhi formula (BSHTYZ) is extensively implemented to manage dementia. However, few studies have been carried out to understand how BSHTYZ enhances recovery of spatial learning and memory and how it modulates relevant mol. interplays in order to achieve this. To investigate neuroprotective function, ameliorating learning/memory capacity of BSHTYZ via GSK-3β / CREB signaling pathway in rat AD models influenced through Aβ1-42. A total of 60 male SD rats (3 mo old) were randomized into six groups and treated with 2.6μg/μl Aβ1-42 (5μl) into the lateral ventricle, though the control group (Con) was administered an equivalent volume of vehicle. Consequently, the rat cohorts were administered either BSHTYZ or donepezil hydrochloride or normal saline, by intragastric administration, for four weeks. Spatial learning / memory were detected through the Morris water maze, and possible mechanisms detected by histomorphol. examination and Western blot in the rat AD models induced by Aβ1-42. Spatial learning/memory issues were monitored after Aβ1-42 infusion in rats. Simultaneously, neuron loss in cornuammonis1 (CA1) / dentate gyrus (DG) within hippocampus region were identified, together with enhanced black granule staining within the hippocampus and hyperphosphorylated tau within Ser202 and Ser396 sites. It was also elucidated that Aβ1-42 had the capacity to up-regulate glycogen synthase kinase-3β (GSK-3β) and down-regulate cAMP response element binding protein (CREB). BSHTYZ was found to reverse such mol. interplays. The study suggested BSHTYZ could possibly provide neuroprotective role against learning / memory impairment, which provided a potential therapeutic tool delaying the progression of AD mol. interplays that includes the GSK-3β / CREB signaling pathway. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hussain, Anwar et al. published their research in RSC Advances in 2021 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

A highly selective pyridoxal-based chemosensor for the detection of Zn(II) and application in live-cell imaging; X-ray crystallography of pyridoxal-TRIS Schiff-base Zn(II) and Cu(II) complexes was written by Hussain, Anwar;Mariappan, Kadarkaraisamy;Cork, Dawson C.;Lewandowski, Luke D.;Shrestha, Prem K.;Giri, Samiksha;Wang, Xuejun;Sykes, Andrew G.. And the article was included in RSC Advances in 2021.Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride The following contents are mentioned in the article:

In a simple, one-step reaction, we have synthesized a pyridoxal-based chemosensor by reacting tris(hydroxymethyl)aminomethane (TRIS) together with pyridoxal hydrochloride to yield a Schiff-base ligand that is highly selective for the detection of Zn(II) ion. Both the ligand and the Zn(II) complex have been characterized by 1H & 13C NMR, ESI-MS, CHN analyses, and X-ray crystallog. The optical properties of the synthesized ligand were investigated in an aqueous buffer solution and found to be highly selective and sensitive toward Zn(II) ion through a fluorescence turn-on response. The competition studies reveal the response for zinc ion is unaffected by all alkali and alk. earth metals; and suppressed by Cu(II) ion. The ligand itself shows a weak fluorescence intensity (quantum yield, Φ = 0.04), and the addition of zinc ion enhanced the fluorescence intensity 12-fold (quantum yield, Φ = 0.48). The detection limit for zinc ion was 2.77 x 10-8 M, which is significantly lower than the WHO′s guideline (76.5 μM). Addition of EDTA to a solution containing the ligand-Zn(II) complex quenched the fluorescence, indicating the reversibility of Zn(II) binding. Stoichiometric studies indicated the formation of a 2 : 1 L2Zn complex with a binding constant of 1.2 x 109 M-2 (±25%). The crystal structure of the zinc complex shows the same hydrated L2Zn complex, with Zn(II) ion binding with an octahedral coordination geometry. We also synthesized the copper(II) complex of the ligand, and the crystal structure showed the formation of a 1 : 1 adduct, revealing 1-dimensional polymeric networks with octahedral coordinated Cu(II). The ligand was employed as a sensor to detect zinc ion in HEK293 cell lines derived from human embryonic kidney cells grown in tissue culture which showed strong luminescence in the presence of Zn(II). We believe that the outstanding turn-on response, sensitivity, selectivity, lower detection limit, and reversibility toward zinc ion will find further application in chem. and biol. science. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Melough, Melissa M. et al. published their research in Environmental Research in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 620-92-8

Diet quality and exposure to endocrine-disrupting chemicals among US adults was written by Melough, Melissa M.;Maffini, Maricel V.;Otten, Jennifer J.;Sathyanarayana, Sheela. And the article was included in Environmental Research in 2022.Reference of 620-92-8 The following contents are mentioned in the article:

Human exposure to endocrine-disrupting chems. (EDCs) may increase risk for chronic disease. Diet is a significant source of EDC exposure, yet healthy diets recommended for chronic disease prevention have not been thoroughly examined for associations with EDC exposure. Using data from the National Health and Nutrition Examination Survey 2013-2016, we examined associations of dietary patterns with exposure to non-persistent EDCs potentially consumed through diet. EDCs were measured in spot urine samples. Diet was assessed using 24-h recalls. Multivariable linear regression was used to examine associations of three healthy diet scores [Healthy Eating Index (HEI), relative Mediterranean Diet (rMED), and Dietary Approaches to Stop Hypertension] and fast-food consumption with EDCs. In fully adjusted models, no diet was associated with exposure to the bisphenols, phthalates, or polycyclic aromatic hydrocarbons examined A 1-point increase in rMED (of 18 possible points) was associated with 2.7% (95% CI: 1.7%, 3.8%) greater urinary nitrate. A 10-point increase in HEI (of 100 possible points) was associated with 5.3% (95% CI: 2.8%, 7.9%) greater nitrate and 6.8% (95% CI: 4.5%, 9.2%) greater perchlorate. Because perchlorate and nitrate can disrupt thyroid hormone production, we conducted an exploratory anal. to examine whether these chems. mediate an association between diet and thyroid hormones. A 10-point increase in HEI was associated with 0.6% reduced serum total thyroxine (95% CI: 1.7%, 0.5%) among all adults, with 57.5% of the effect explained by perchlorate. Nitrate mediated an association of rMED with modestly reduced total triiodothyronine among females. Most EDCs examined had no association with the diets evaluated, indicating that recommended healthy diets were not protective against EDC exposures. As observed with two thyroid antagonists, some recommended diets may increase EDC exposures and related adverse health outcomes. Addnl. work should identify effective food production and processing practices to reduce dietary exposures to potentially harmful EDCs. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Reference of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Alvarez, Beatriz et al. published their research in Microbial Cell Factories in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C9H18O5S

Enhanced protein translocation to mammalian cells by expression of EtgA transglycosylase in a synthetic injector E. coli strain was written by Alvarez, Beatriz;Munoz-Abad, Victor;Asensio-Calavia, Alejandro;Fernandez, Luis Angel. And the article was included in Microbial Cell Factories in 2022.Electric Literature of C9H18O5S The following contents are mentioned in the article:

Bacterial type III secretion systems (T3SSs) assemble a multiprotein complex termed the injectisome, which acts as a mol. syringe for translocation of specific effector proteins into the cytoplasm of host cells. The use of injectisomes for delivery of therapeutic proteins into mammalian cells is attractive for biomedical applications. With that aim, we previously generated a non-pathogenic Escherichia coli strain, called Synthetic Injector E. coli (SIEC), which assembles functional injectisomes from enteropathogenic E. coli (EPEC). The assembly of injectisomes in EPEC is assisted by the lytic transglycosylase EtgA, which degrades the peptidoglycan layer. As SIEC lacks EtgA, we investigated whether expression of this transglycosylase enhances the protein translocation capacity of the engineered bacterium. The etgA gene from EPEC was integrated into the SIEC chromosome under the control of the inducible tac promoter, generating the strain SIEC-eEtgA. The controlled expression of EtgA had no effect on the growth or viability of bacteria. Upon induction, injectisome assembly was sim 30% greater in SIEC-eEtgA than in the parental strain, as determined by the level of T3SS translocon proteins, the hemolytic activity of the bacterial strain, and the impairment in flagellar motility. The functionality of SIEC-eEtgA injectisomes was evaluated in a derivative strain carrying a synthetic operon (eLEE5), which was capable of delivering Tir effector protein into the cytoplasm of HeLa cells triggering F-actin polymerization beneath the attached bacterium. Lastly, using beta-lactamase as a reporter of T3SS-protein injection, we determined that the protein translocation capacity was sim 65% higher in the SIEC-EtgA strain than in the parental SIEC strain. We demonstrate that EtgA enhances the assembly of functional injectisomes in a synthetic injector E. coli strain, enabling the translocation of greater amounts of proteins into the cytoplasm of mammalian cells. Accordingly, EtgA expression may boost the protein translocation of SIEC strains programmed as living biotherapeutics. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Electric Literature of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Peng, Fei et al. published their research in Journal of Ethnopharmacology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C30H26O12

Anti-inflammatory effect of flavonoids from chestnut flowers in lipopolysaccharide-stimulated RAW 264.7 macrophages and acute lung injury in mice was written by Peng, Fei;Yin, Hongyang;Du, Bin;Niu, Kui;Yang, Yuedong;Wang, Shujun. And the article was included in Journal of Ethnopharmacology in 2022.Formula: C30H26O12 The following contents are mentioned in the article:

Chestnut flowers were one of the byproducts during chestnut industrial processing. Chestnut (Castanea mollissima Blume) flower is rich in flavonoids and has been used as a traditional medicine to treat a variety of diseases including respiratory disorders for a long history. The present study aims to investigate the potential anti-inflammatory effect of flavonoids from chestnut flower (FCF) in lipopolysaccharide (LPS)-treated RAW 264.7 cells and stimulated acute lung injury (ALI) in mice. HPLC-ESI-MS/MS was applied to identify flavonoids from Chestnut flower. The ROS content in cells and lung tissue was measured by flow cytometry. The malondialdehyde (MDA) content, superoxide dismutase (SOD) activity and glutathione (GSH) content in cells and bronchoalveolar lavage fluid (BALF) was analyzed by photometry. Furthermore, the level of pro-inflammatory factors was analyzed by ELISA, and the expression of inflammatory gene mRNA by fluorescence quant. PCR. H&E staining was used to evaluate the degree of lung tissue injury in mice. MPO activity was used to measure the degree of neutrophil infiltration. Total protein content was detected by BCA method. A total of forty-nine flavonoids compounds were tentatively identified in FCF by mass spectrometry anal. The results of cell experiment suggested that FCF could alleviate oxidative injury via increasing SOD activity and GSH content, as well as inhibiting the production of intracellular ROS and MDA. FCF exerted its protective effect by suppressing the expression of both inducible nitric oxide synthase (iNOS) and cycooxygenase 2 (COX-2) to inhibit the synthesis of pro-inflammatory factors and cytokines, including NO, PGE2, TNF-α, IL-6 and IL-1β. Besides, FCF treatment could alleviate the thickening of alveolar wall and pulmonary congestion in LPS-treated ALI mice, and significantly inhibit the activity of myeloperoxidas (MPO) and the expression of cytokines in BALF. FCF could ameliorate inflammation and oxidative stress in LPS-treated inflammation, resulting in an overall improvement in both macroscopic and histol. parameters. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Muraskova, Viera et al. published their research in Inorganica Chimica Acta in 2017 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C-C bond formation – Structure, spectral and magnetic properties was written by Muraskova, Viera;Szabo, Norbert;Pizl, Martin;Hoskovcova, Irena;Dusek, Michal;Huber, Stepan;Sedmidubsky, David. And the article was included in Inorganica Chimica Acta in 2017.Recommanded Product: 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride The following contents are mentioned in the article:

The new dinuclear Fe(III) complex, [Fe2(μ-L)2]·3(H2O)·0.38(O), [1, L (2) = (E)-2-(((5-(hydroxymethyl)-2-methyl-3-oxido-1κO-pyridin-4-yl)methylene)amino-1κN)-3-(3-(hydroxymethyl)-2-methyl-5-oxido-1κO-pyridin-1-ium-4-yl)-3-oxido-1:2κ2O-propanoato-2κO]* (*The second ligand has swapped indexes 1 and 2, denoting the individual Fe centers.), was synthesized by reaction of FeCl3·6H2O with potassium pyridoxylidenglycinate in ethanol-water solution Pentadentate pyridoxal Schiff base ligand was generated in situ by aldol condensation of potassium pyridoxylidenglycinate and pyridoxal. A C-C coupling was achieved at room temperature under metal template reaction. The complex was characterized by x-ray structural anal. at 100 K, elemental anal., spectral and magnetic measurements. The compound crystallizes in the monoclinic space group P21/n, with a 9.7445(15), b 19.489(3), c 20.862(6) Å, β 92.595(17)°. Structural anal. of the complex showed that each Fe(III) center has a distorted octahedral FeNO5 core, which is sixfold coordinated through iminic nitrogen atom, two phenoxido oxygen atoms, alkoxo oxygen atom and carboxylato oxygen atom from two Schiff-base ligands forming a rhombic arrangement of metal ions and oxygen atoms. In the structure, two Fe(III) atoms are connected with two alkoxo-bridging ligands providing covalent superexchange pathway by linkage Fe1-O-Fe2 with the Fe1···Fe2 distance of 3.195 Å. In the crystal lattice, the noncovalent interactions, hydrogen bonds, and π-π stacking interactions expand the mononuclear units to 3D supramol. network. The temperature dependent magnetic susceptibility data (6.5-300 K) indicate that the octahedral Fe(III) centers in this complex retain high-spin S = 5/2 (6A1g) in the whole temperature range. The effects of zero-field splitting (D = 7.67 cm-1) and an antiferromagnetic coupling (J = -14.66 cm-1) between the two alkoxo-oxygen bridged Fe(III) ions are discussed. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Recommanded Product: 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chu, Junyu et al. published their research in Reactive & Functional Polymers in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 620-92-8

Design and synthesis of gradient-refractive index isosorbide-based polycarbonates for optical uses was written by Chu, Junyu;Wang, Heng;Zhang, Yiwen;Li, Zhengkai;Zhang, Zhencai;He, Hongyan;Zhang, Qinqin;Xu, Fei. And the article was included in Reactive & Functional Polymers in 2022.SDS of cas: 620-92-8 The following contents are mentioned in the article:

The synthesis of bio-based polymers using renewable bio-monomers have received extensive research attention to meet the concept of environmental sustainability. Isosorbide (ISB) derived from biomass is commonly used in the polycarbonate industry as an alternative to bisphenol A (BPA) because it is green, non-toxic, and more widely available. Compared to BPA-based polycarbonate, isosorbide-based polycarbonate has excellent properties such as high transparency, easy coloration, and outstanding rigidity. However, the naturally low refractive index of isosorbide triggers the latter to fall outside the threshold of optical applications. In order to further improve the refractive index of isosorbide-based polycarbonate without affecting its transparency and rigidity, a copolymerization scheme of bisphenol monomers (BPs) with isosorbide is proposed in this work. A series of isosorbide-bisphenol copolycarbonates were synthesized by a melt polycondensation process using ionic liquid 1,4-(1,4-diazabicyclo[2.2.2]octane)butyl dibromide ([C4(DABCO)2][Br]2) as the catalyst. As expected, the monomer structure had significant effect on the optical property and mol. weight of the copolycarbonates, the monomer bis(p-hydroxyphenyl) ether (BPO) had better reactivity among the screened seven monomers resulting in relatively higher mol. weight Moreover, poly(BPO-co-ISB carbonate) (POIC) using BPO as the monomer exhibited a high Abbe number (vd = 39.7), low yellowness index (YI = 0.93), and a higher refractive index (nd = 1.536), which was much higher than poly(isosorbide carbonate) (1.496). Therefore, a series of POICs were further prepared to investigate the effect of BPO content on the optical, thermal, mech., and hydrophobic properties of the materials. The results showed that the copolymers POICs had higher refractive indexes (1.511-1.573), better thermal stability, flexibility, hydrophobicity and processing-friendly glass transition temperature (Tg) and pencil hardness, and thus are expected to be sustainable materials for optical lenses. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8SDS of cas: 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhu, Min et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C13H12O2

Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation was written by Zhu, Min;Wei, Rongguo;Li, Yuanyuan;Li, Jinbo;Dong, Mengqi;Chen, Xuanyue;Lv, Lin;Qin, Zhanfen. And the article was included in Science of the Total Environment in 2022.Formula: C13H12O2 The following contents are mentioned in the article:

Emerging evidence has shown that bisphenol A (BPA) can exert adverse effects on intestinal barrier in rodents, but little is known about its underlying mechanisms. We previously found BPA and its substitute bisphenol F (BPF) disrupted Notch signaling and altered intestinal histol. structures in Xenopus laevis tadpoles. The present study aimed to determine whether BPA and BPF could affect intestinal homeostasis via Notch/Wnt signaling and induce intestinal barrier dysregulation in adult mammals, given the fundamental roles of the two conserved signaling pathways in intestinal homeostasis and regulation of intestinal barrier. We found that following 7-day administration with BPA or BPF through drinking water at the reference dose of 50μg/kg/d and no observed adverse effect level of 5 mg/kg/d (NOAEL) of BPA, adult male mice displayed no alterations at histol. and cellular levels in colons, but high dose of both BPA and BPF downregulated the expression of Notch- and Wnt-related genes as well as key genes responsible for intestinal homeostasis. When administration was extended to 14 days, all treatments significantly suppressed the expression of all tested Notch- and Wnt-related genes; correspondingly, administrated colons exhibited downregulated expression of key genes responsible for intestinal homeostasis and reduced cell proliferation in crypts. Importantly, all treatments suppressed secretory cell differentiation, reduced mucin protein levels and downregulated expression of tight junction markers, implicating mucosal barrier dysregulation. Furthermore, inflammatory cell infiltration and upregulated expression of inflammatory cytokine genes in colons, coupled with increased serum inflammatory cytokine levels, were observed in all treatments. All results show that both BPA and BPF at the reference dose disrupted Notch/Wnt signaling and intestinal homeostasis, thereby leading to mucosal barrier dysregulation and intestinal inflammation in mice. This is the first study revealing the adverse influences of BPF on mammal intestines and underlying mechanisms for bisphenol-caused intestinal injury. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Formula: C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Jing et al. published their research in Cell Death & Disease in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 29106-49-8

Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury was written by Zhao, Jing;Wang, Guorong;Han, Kaitao;Wang, Yang;Wang, Lin;Gao, Jinxia;Zhao, Sen;Wang, Gang;Chen, Shengyang;Luo, An;Wu, Jianlin;Wang, Guangzhi. And the article was included in Cell Death & Disease in 2022.SDS of cas: 29106-49-8 The following contents are mentioned in the article:

Abstract: Apoptosis is a critical event in the pathogenesis of lung ischemia/reperfusion (I/R) injury. Sirtuin 3 (SIRT3), an important deacetylase predominantly localized in mitochondria, regulates diverse physiol. processes, including apoptosis. However, the detailed mechanisms by which SIRT3 regulates lung I/R injury remain unclear. Many polyphenols strongly regulate the sirtuin family. In this study, we found that a polyphenol compound, procyanidin B2 (PCB2), activated SIRT3 in mouse lungs. Due to this effect, PCB2 administration attenuated histol. lesions, relieved pulmonary dysfunction, and improved the survival rate of the murine model of lung I/R injury. Addnl., this treatment inhibited hypoxia/reoxygenation (H/R)-induced A549 cell apoptosis and rescued Bcl-2 expression. Using Sirt3-knockout mice and specific SIRT3 knockdown in vitro, we further found that SIRT3 strongly protects against lung I/R injury. Sirt3 deficiency or enzymic inactivation substantially aggravated lung I/R-induced pulmonary lesions, promoted apoptosis, and abolished PCB2-mediated protection. Mitochondrial pyruvate kinase M2 (PKM2) inhibits apoptosis by stabilizing Bcl-2. Here, we found that PKM2 accumulates and is hyperacetylated in mitochondria upon lung I/R injury. By screening the potential sites of PKM2 acetylation, we found that SIRT3 deacetylates the K433 residue of PKM2 in A549 cells. Transfection with a deacetylated mimic plasmid of PKM2 noticeably reduced apoptosis, while acetylated mimic transfection abolished the protective effect of PKM2. Furthermore, PKM2 knockdown or inhibition in vivo significantly abrogated the antiapoptotic effects of SIRT3 upregulation. Collectively, this study provides the first evidence that the SIRT3/PKM2 pathway is a protective target for the suppression of apoptosis in lung I/R injury. Moreover, this study identifies K433 deacetylation of PKM2 as a novel modification that regulates its anti-apoptotic activity. In addition, PCB2-mediated modulation of the SIRT3/PKM2 pathway may significantly protect against lung I/R injury, suggesting a novel prophylactic strategy for lung I/R injury. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts