Hung, Shiou-Fen et al. published their research in Polymers (Basel, Switzerland) in 2021 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C8H10ClNO3

Development of a rapid-onset, acid-labile linkage polyplex-mixed micellar system for anticancer therapy was written by Hung, Shiou-Fen;Wen, Yu-Han;Yu, Lu-Yi;Chiu, Hsin-Cheng;Chiang, Yi-Ting;Lo, Chun-Liang. And the article was included in Polymers (Basel, Switzerland) in 2021.Electric Literature of C8H10ClNO3 The following contents are mentioned in the article:

In the treatment of cancers, small interfering ribonucleic acids (siRNAs) are delivered into cells to inhibit the oncogenic protein′s expression; however, polyanions, hydrophilicity, and rapid degradations in blood, endosomal or secondary lysosomal degradation hamper clinal applications. In this study, we first synthesized and characterized two copolymers: methoxy poly(ethylene glycol)-b-poly(2-hydroxy methacrylate-ketal-pyridoxal) and methoxy poly(ethylene glycol)-b-poly(methacrylic acid-co-histidine). Afterwards, we assembled two polymers with the focal adhesion kinase (FAK) siRNA, forming polyplex-mixed micelles for the treatment of the human colon cancer cell line HCT116. In terms of the physiol. condition, the cationic pyridoxal mols. that were conjugated on the copolymer with ketal bonds could electrostatically attract the siRNA. Addnl., the pyridoxal could form a hydrophobic core together with the hydrophobic deprotonated histidine mols. in the other copolymer and the hydrophilic polyethylene glycol (PEG) shell to protect the siRNA. In an acidic condition, the pyridoxal would be cleaved from the polymers due to the breakage of the ketal bonds and the histidine mols. can simultaneously be protonated, resulting in the endosome/lysosome escape effect. On the basis of our results, the two copolymers were successfully prepared and the pyridoxal derivatives were identified to be able to carry the siRNA and be cleavable by the copolymers in an acidic solution Polyplex-mixed micelles were prepared, and the micellar structures were identified. The endosome escape behavior was observed using a confocal laser scanning microscopy (CLSM). The FAK expression was therefore reduced, and the cytotoxicity of siRNA toward human colon cancer cells was exhibited, rapidly in 24 h. This exceptional anticancer efficiency suggests the potential of the pH-sensitive polyplex-mixed micellar system in siRNA delivery. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Electric Literature of C8H10ClNO3).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C8H10ClNO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Tang, Huiting et al. published their research in Journal of Pharmaceutical and Biomedical Analysis in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Related Products of 29106-49-8

High-level structural analysis of proanthocyanidins using full collision energy ramp-MS2 spectrum was written by Tang, Huiting;Cao, Yan;Liu, Li;Zhang, Yunfeng;Li, Wei;Tu, Pengfei;Li, Jun;Song, Yuelin. And the article was included in Journal of Pharmaceutical and Biomedical Analysis in 2022.Related Products of 29106-49-8 The following contents are mentioned in the article:

Proanthocyanidins (PACs) refer to a group of polyphenols consisting of flavan-3-ol units, and are ubiquitously distributed in fruits, vegetables, nuts and grains. PACs possess high-level structural diversity because of the fickle linkage manners amongst units, the polymerization degree and stereoisomeric forms, thus leading to a great challenge for structural anal. Although LC-MS/MS currently serves as the workhorse to profile PACs in complicated matrixes, its still challenging to achieve confirmatively structural annotation even employing the cutting-edged high-resolution MS/MS techniques, and the key tech. obstacle lies at isomeric discrimination. To pursue as many auxiliary structural clues as possible, full collision energy ramp-MS2 (FCER-MS2) spectrum was conceptually designed here to involve all mass fragmentation behaviors of a given compound, such as m/z, optimal collision energy (OCE) and the maximal relative ion intensity (RIImax) aiming to advance the structural annotation confidences of PACs through reliably differentiating isomers. Thirteen authentic compounds were collected to mine relationships between chem. structures and FCER-MS2 spectra that were correlated by three progressive steps: (1) recording MS/MS spectrum by LC-Q-TOF-MS; (2) proposing mass fragmentation pathways to assign those obvious fragment ion species; and (3) acquiring breakdown graph for each concerned fragment ion species by programming online energy-resolved mass spectrometry to compose FCER-MS2 spectrum. Afterwards, the rules were applied for PACs-focused chem. characterization of a medicinal herb namely Indigofera stachyodes (Chinese name: Xuerenshen), and as a result, 22 PACs were captured and more importantly, isomerically identified by deciphering FCER-MS2 spectra. Therefore, FCER-MS2 spectrum provides a promising way to achieve in-depth isomeric discrimination of, but not limited to, PACs. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Related Products of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Related Products of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wiklund, Linus et al. published their research in Toxicology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Application of 620-92-8

Systematic evaluation of the evidence for identification of endocrine disrupting properties of Bisphenol F was written by Wiklund, Linus;Beronius, Anna. And the article was included in Toxicology in 2022.Application of 620-92-8 The following contents are mentioned in the article:

Identification of endocrine disruptors (EDs) is a highly prioritized issue in the EU. However, scientific criteria to identify EDs have so far only been implemented for biocidal and plant protection products. The European Commission is working on developing a horizontal approach to the identification of EDs across legislations, based on these scientific criteria. With this study, our aim was to evaluate evidence on endocrine disrupting properties of Bisphenol F (BPF) by applying the process set out for biocidal and plant protection products in Europe. BPF is not registered under REACH and therefore assumed not to be produced in the EU > 1 ton/yr, yet the substance has been detected in urine, serum, and breast milk in populations from different countries in Europe. BPF is raising concern since it is an analog of the known ED and reproductive toxicant Bisphenol A. Relevant evidence on endocrine disrupting properties of BPF from the open literature was collected using systematic review methodol. Pre-defined inclusion criteria were developed to select relevant studies, and data was extracted The reliability of included studies was evaluated by the Science in Risk Assessment and Policy tool, and results were converted into Klimisch categories to allow for categorization of study reliability. A weight-of-evidence approach was used to analyze the evidence and draw conclusions on endocrine-related activity and/or endocrine adversity. We found that there is sufficient evidence to conclude on an endocrine mechanism, and while evidence for adversity was not considered sufficient, we still conclude that BPF could also cause endocrine-mediated adversity. Two modes of action were postulated based on the collected data for BPF. Challenges of performing the ED assessment for data-poor chems. and the importance of adequate reporting of studies in the open literature, especially for new approach methods, are discussed. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Application of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Application of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Zhicong et al. published their research in Arabian Journal of Chemistry in 2021 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Category: alcohols-buliding-blocks

Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential was written by Chen, Zhicong;Zhong, Biming;Barrow, Colin J.;Dunshea, Frank R.;Suleria, Hafiz A. R.. And the article was included in Arabian Journal of Chemistry in 2021.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Dragon fruit is a popular tropical fruit that has a high phenolic content which are the main contributors to the antioxidant potential and health benefits of dragon fruit pulp and peel waste. Although some phenolic compounds in dragon fruit have previously been reported, a comprehensive anal. of complete phenolic profile of the Australian varieties has not been conducted. Thus, the aim of this study was to extract, identify and quantify phenolics from dragon fruits grown in Australia. Phenolic compounds were extracted from the peels and pulps of white and red dragon fruit. Phenolic content was determined by total phenolic content (TPC), total flavonoid content (TFC) and total tannin content (TTC), while antioxidant activities were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and total antioxidant capacity (TAC). The results showed that dragon fruit pulp had a higher total phenolic content and stronger antioxidant capacity than peel, while the peel had a higher content of flavonoids and tannins than the pulp. Liquid chromatog. electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) was used for the characterization of phenolic compounds, a total of 80 phenolics including phenolic acids (25), flavonoids (38), lignans (6), stilbene (3) and other polyphenols (8) were characterized in all dragon fruits. High performance liquid chromatog. equipped with photodiode array detector (HPLC-PDA) quantified the phenolic compounds in different portion of dragon fruit and showed that dragon peel had higher concentrations of phenolics than pulp. The results highlighted that both dragon fruit peel and pulp are potential sources of phenolic compounds, with peel in particular being a source of antioxidant phenolics with potential as ingredients for the food and pharmaceutical industries. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Category: alcohols-buliding-blocks).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ebadi, Mahsa et al. published their research in Macromolecules (Washington, DC, United States) in 2020 | CAS: 115-84-4

2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Related Products of 115-84-4

Restricted Ion Transport by Plasticizing Side Chains in Polycarbonate-Based Solid Electrolytes was written by Ebadi, Mahsa;Eriksson, Therese;Mandal, Prithwiraj;Costa, Luciano T.;Araujo, C. Moyses;Mindemark, Jonas;Brandell, Daniel. And the article was included in Macromolecules (Washington, DC, United States) in 2020.Related Products of 115-84-4 The following contents are mentioned in the article:

Increasing the ionic conductivity has for decades been an overriding goal in the development of solid polymer electrolytes. According to fundamental theories on ion transport mechanisms in polymers, the ionic conductivity is strongly correlated to free volume and segmental mobility of the polymer for the conventional transport processes. Therefore, incorporating plasticizing side chains onto the main chain of the polymer host often appears as a clear-cut strategy to improve the ionic conductivity of the system through lowering of the glass transition temperature (Tg). This intended correlation between Tg and ionic conductivity is, however, not consistently observed in practice. The aim of this study is therefore to elucidate this interplay between segmental mobility and polymer structure in polymer electrolyte systems comprising plasticizing side chains. To this end, we utilize the synthetic versatility of the ion-conductive poly(trimethylene carbonate) (PTMC) platform. Two types of host polymers with side chains added to a PTMC backbone are employed, and the resulting electrolytes are investigated together with the side chain-free analog both by experiment and with mol. dynamics (MD) simulations. The results show that while added side chains do indeed lead to a lower Tg, the total ionic conductivity is highest in the host matrix without side chains. It was seen in the MD simulations that while side chains promote ionic mobility associated with the polymer chain, the more efficient interchain hopping transport mechanism occurs with a higher probability in the system without side chains. This is connected to a significantly higher solvation site diversity for the Li+ ions in the side-chain-free system, providing better conduction paths. These results strongly indicate that the side chains in fact restrict the mobility of the Li+ ions in the polymer hosts. This study involved multiple reactions and reactants, such as 2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4Related Products of 115-84-4).

2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Related Products of 115-84-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Biswal, Jayashree et al. published their research in ACS Omega in 2021 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Safety of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches was written by Biswal, Jayashree;Jayaprakash, Prajisha;Rayala, Suresh Kumar;Venkatraman, Ganesh;Rangaswamy, Raghu;Jeyaraman, Jeyakanthan. And the article was included in ACS Omega in 2021.Safety of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

P21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 mols. out of ~2162 drug mols., based on their docking energies and mol. interaction patterns. From the mols. that were considered for WaterMap anal., seven mols., namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water mols., only Acalabrutinib, Flubendazole, and Trazodone mols. highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and mol. dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug mols. Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug mol. Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The MO and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug mols. in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro anal. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Safety of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Safety of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Helmer, Patrick O. et al. published their research in Journal of Chromatography A in 2020 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.HPLC of Formula: 923-61-5

Mass spectrometric investigation of cardiolipins and their oxidation products after two-dimensional heart-cut liquid chromatography was written by Helmer, Patrick O.;Wienken, Carina M.;Korf, Ansgar;Hayen, Heiko. And the article was included in Journal of Chromatography A in 2020.HPLC of Formula: 923-61-5 The following contents are mentioned in the article:

The anionic phospholipid class of cardiolipins (CL) is increasingly attracting scientific attention in the recent years. CL can be found as a functional component of mitochondrial membranes in almost all living organisms. Changes in the CL composition are favored by oxidative stress. Based on this finding, the investigation of CL and their oxidation products in relation to various disease patterns, including neurodegenerative ones, is moving into the focus of current research. The anal. of this diverse lipid class is still challenging and requires sensitive and selective methods. In this work, we demonstrate an online two-dimensional liquid chromatog. (2D-LC) approach by means of a heart-cut setup. In the first dimension, a fast hydrophilic interaction liquid chromatog. (HILIC) method was developed for the separation of CL and their oxidation products from other phospholipid classes, but more important from nonpolar lipid classes, such as triacylglycerol and cholesterol. Those classes can neg. affect the electrospray ionization and also the chromatog. For the heart-cut approach, the CL fraction was selectively transferred to a loop using a six-port valve followed by the transfer to a reversed phase (RP) column in second dimension. On the RP column, the transferred CL fraction including the oxidation products were separated according to the hydrophobicity of acyl chain moieties. Matrix effects were significantly reduced compared to the one-dimensional LC-MS method. In addition, the total separation time had not to be prolonged by shifting the equilibration step of the RP column parallel to the separation in first dimension. The heart-cut LC-LC approach was applied to artificially oxidized lipid extracts of bovine heart and yeast by means of Fenton reaction. In summary, 42 species have been identified by high resolution mass spectrometry and database matching. 31 species thereof have been further characterized by MS/MS experiments This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5HPLC of Formula: 923-61-5).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.HPLC of Formula: 923-61-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Leng, Zexing et al. published their research in ACS Omega in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C20H22O8

Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential was written by Leng, Zexing;Zhong, Biming;Wu, Hanjing;Liu, Ziyao;Rauf, Abdur;Bawazeer, Sami;Suleria, Hafiz Ansar Rasul. And the article was included in ACS Omega in 2022.COA of Formula: C20H22O8 The following contents are mentioned in the article:

Bell peppers are widely considered as healthy foods that can provide people with various phytochems., especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatog. coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatog. photodiode array (HPLC-PDA) quantification, resp. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2′-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6COA of Formula: C20H22O8).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C20H22O8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Niu, Lijun et al. published their research in Separation and Purification Technology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 4,4′-Methylenediphenol

Synergistic oxidation of organic micropollutants by Mn(VII)/periodate system: Performance and mechanism was written by Niu, Lijun;An, Lili;Zhang, Kaiting;Chen, Qian;Yu, Xin;Zhang, Menglu;Feng, Mingbao. And the article was included in Separation and Purification Technology in 2022.Recommanded Product: 4,4′-Methylenediphenol The following contents are mentioned in the article:

The increased release of various emerging organic contaminants into natural waters has posed great threats to ecol. safety and public health. The ensuing global water contamination has necessitated the development of highly efficient treatment strategies for water purification Herein, we presented for the first time that the combined utilization of permanganate (Mn(VII)) and periodate (PI) could synergistically and rapidly accomplish complete destruction of different organic micropollutants (e.g., bisphenol F, methotrexate, and tetracycline) within 2-5 min. Comparatively, the single treatment only eliminated very small amounts of micropollutants. Mechanistic investigations were performed using the trapper-based ESR, scavenging and probe experiments, UV-vis spectra anal., determination of iodine species, and multiple validation tests. These data collectively suggested that the highly reactive Mn(V)/Mn(VI) intermediates played the leading role in accelerating contaminant abatement within the Mn(VII)/PI oxidation system. Reactive oxygen/or iodine species (1O2, ·OH, O2·, IO3·, and IO4·) and low valence Mn species (Mn(II), Mn(III), and in-situ formed MnO2 colloids) did not participate in decontamination in this process. Subsequently, the oxidized products of three micropollutants were determined, and the transformation pathways were clarified. Ring-opening, C-C bond cleavage, demethylation, carbonylation, and hydroxylation reactions mainly occurred in the degradation process. Notably, the combined system did not yield any toxic iodinated end products. Finally, the environmental risks of the degradation products were also evaluated based on in silico QSAR-based prediction tools. Overall, this study provides a novel, highly efficient, and green treatment technol., i.e., Mn(VII)/PI system, which could be employed for rapid and sustainable water decontamination. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Recommanded Product: 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Yue et al. published their research in Separation and Purification Technology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 620-92-8

Enhanced adsorption selectivity of bisphenol analogues by tuning the functional groups of covalent organic frameworks was written by Zhao, Yue;Feng, Chenghong;Tian, Chenhao;Li, Zhenling;Yang, Yu. And the article was included in Separation and Purification Technology in 2022.Related Products of 620-92-8 The following contents are mentioned in the article:

Bisphenol analogs (BPs) are widely used as plasticizers and can be released during the aging and degradation of microplastics. Their persistence in water can cause serious harm to the ecosystem and human health. To improve the capture ability of COFs toward these estrogen-like toxins from water, amino group-functionalized COFs (COFs-TpBD(NH2)2) were constructed from nitro group COFs (COFs-TpBD(NO2)2) via the reduction of nitro to amino groups, and the adsorption behaviors for the five BPs (BPA, BPF, BPC, BPS and 4-CP) were compared. The focus was laid on the role of functional-group-tuning in the changes of adsorption capacity, selectivity and mechanisms of the COFs absorbents. The results showed that TpBD(NH2)2 has a higher adsorption capacity and better adsorption selectivity for most BPs than TpBD(NO2)2. COFs with nitro and amino groups show the best adsorption selectivity for BPC (KF = 6.71 min-1) and BPF (KF = 9.49 min-1), resp. Chemisorption dominates the adsorption of the two COFs, and internal particle diffusion is the rate-determining step. The adsorption behavior difference between the two COFs was ascribed to the successful conversion of functional groups of the COFs from nitro to amino groups, which was proven by FT-IR, SEM, PXRD, and BET characterization results. Adsorption of BPA, BPC and BPF by TpBD(NO2)2 is pos. related to hydrophobic interactions (represented by log Kow), but the adsorption mechanism of TpBD(NH2)2 was mainly attributed to the electrostatic interaction, as evidenced by the zeta potential and pKa. Hydrogen bonds were proven to be a critical factor that affects the adsorption of BPS and 4-CP by COFs. This study on the appropriate selection of COFs functional groups can provide insight into the future design of adsorbents and the prevention of BPs pollution release from microplastics. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Related Products of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts