Morsi, Eman A. et al. published their research in Current Bioactive Compounds in 2020 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.SDS of cas: 106-21-8

GC-analysis, and Antioxidant, Anti-inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum was written by Morsi, Eman A.;Ahmed, Hend O.;Abdel-Hady, Heba;El-Sayed, Mortada;Shemis, Mohamed A.. And the article was included in Current Bioactive Compounds in 2020.SDS of cas: 106-21-8 The following contents are mentioned in the article:

Linum usitatissimum (Linn); known as Flaxseed, is one of the most important medicinal plants traditionally used for health benefits and also as nutritional purposes. Estimation of total phenolic and flavonoid contents, and evaluation of the antioxidant, antiinflammatory and anticancer activities have been performed on hexane, Et acetate, n-butanol, and methanol extracts and also on fractions of methanol extract (hexane, Et acetate, and n-butanol). Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts was tested on Hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7). The methanolic extract and its Et acetate fraction showed higher contents of total phenols and flavonoids. Also, the methanolic extract showed a higher antioxidant activity. The butanolic and Et acetate fractions at concentration 500μg/mL yielded a higher percent of inhibition of protein denaturation; 87.9% and 90%, resp. The Et acetate fraction and the methanolic extract showed an obvious anticancer activity against HepG2 and MCF7 (IC50 = 60±0.24 and 29.4±0.12μg. ml-1) and (IC50 = 94.7±0.21 and 227±0.48μg. ml-1), resp. The GC-MS anal. showed that the methanolic extract had 32 compounds whereas the Et acetate and butanol fractions contained 40 and 36 compounds, resp. Flaxseed contains different biol. active compounds that have been found to possess various activities, which can protect the human body against several diseases. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8SDS of cas: 106-21-8).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.SDS of cas: 106-21-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wu, J. et al. published their research in Materials Today Nano in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Mechanistic insight into the one step green synthesis of hybrid rGO/Fe NPs was written by Wu, J.;Wu, P.;Weng, X.;Lin, J.;Owens, G.;Chen, Z.. And the article was included in Materials Today Nano in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

Recently, the green synthesis of iron nanoparticles and associated hybrids using plant extracts has attracted much attention due to its low cost, simplicity and environmental friendliness. However, the exact formation mechanism is still unclear. In this study, the one step green synthesis of hybrid rGO/Fe NPs by a tea extract was examined using a response surface methodol. (RSM) to obtain a high activity of rGO/Fe NPs. The results showed that the best conditions for synthesis were an extract concentration = 35 g/L, pH = 7, and temperature = 30°C. The optimized hybrid produced could remove 99.9% of mitoxantrone (MTX) compared to only 78.9% when unoptimized. To better understand the formation process, characterizations by SEM, TEM, AFM, FTIR, XRD, Raman, and XPS were performed. Theses characterizations showed that the Fe NPs produced had a particle size of 25 nm which were deposited randomly across the rGO nanosheet with a thickness of approx. 1.5 nm, indicating that stable hybrid rGO/Fe NPs were successfully synthesized, where the green tea extract exhibited both reducing and capping/stabilizing behavior. Furthermore, the specific biomols. in the green tea extract responsible for bio-reduction and stabilization were identified by GC-MS and LC-MS, which showed that catechins were the main reducing agents, while alkaloids, amino acids and phenolic acids were the main capping/stabilizing agents. Finally, a mechanism for synthesizing rGO/Fe NPs was proposed, where the polyphenols successfully reduced GO and complexed with iron ions to form amorphous ferric (and ferrous) polyphenol complex nanoparticles. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lanuza, Fabian et al. published their research in European Journal of Nutrition | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Synthetic Route of C20H22O8

Descriptive analysis of dietary (poly)phenol intake in the subcohort MAX from DCH-NG: “Diet, Cancer and Health-Next Generations cohort” was written by Lanuza, Fabian;Zamora-Ros, Raul;Rostgaard-Hansen, Agnetha Linn;Tjoenneland, Anne;Landberg, Rikard;Halkjaer, Jytte;Andres-Lacueva, Cristina. And the article was included in European Journal of Nutrition.Synthetic Route of C20H22O8 The following contents are mentioned in the article:

(Poly)phenols are bioactive compounds widely distributed in plant-based foods. Currently, limited data exist on the intake distribution of (poly)phenols across meals. This study aimed to estimate dietary intakes of all individual (poly)phenols and total intake per class and subclass by meal event, and to identify their main food sources in the subcohort MAX from the Diet, Cancer and Health-Next Generations cohort (DCH-NG). Dietary data were collected using three web-based 24-h dietary recalls over 1 yr. In total, 676 participants completed at least one recall. The dietary data were linked to Phenol-Explorer database using standardized procedures and an inhouse software. We categorized foods/drinks into five options of meal events selected by the participant: ′Breakfast′, Lunch, Evening, Snack, and Drink. Adjusted total (poly)phenols mean intake by meal was the highest in the drink event (563 mg/day in men and 423 mg/day in women) and the lowest in the evening event (146 mg/day in men and 137 mg/day in women). The main overall (poly)phenol class contributor was phenolic acids (55.7-79.0%), except for evening and snack events where it was flavonoids (45.5-60%). The most consumed (poly)phenol subclasses were hydroxycinnamic acids and proanthocyanidins. Nonalcoholic beverages (coffee accounted for 66.4%), cocoa products, and cereals were the main food sources of total (poly)phenols. Conclusion: This study provides data on the variability in the intake of classes and subclasses of (poly)phenols and their main food sources by meal event according to lifestyle data, age, and gender in a Danish population. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Synthetic Route of C20H22O8).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Synthetic Route of C20H22O8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Steele, W. V. et al. published their research in Journal of Chemical and Engineering Data in 2002 | CAS: 115-84-4

2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.COA of Formula: C9H20O2

Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, sec-Butylbenzene, tert-Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-ethyl-1,3-propanediol, 2,2,4-Trimethyl-1,3-pentanediol, and 1-Chloro-2-propanol was written by Steele, W. V.;Chirico, R. D.;Knipmeyer, S. E.;Nguyen, A.. And the article was included in Journal of Chemical and Engineering Data in 2002.COA of Formula: C9H20O2 The following contents are mentioned in the article:

This paper reports measurements made within DIPPR2 Project 821 for the 1995 Project Year. Vapor pressures were measured to a pressure limit of 270 kPa or lower decomposition point using a twin ebulliometry apparatus for the nine compounds listed in the title. Liquid-phase densities along the saturation line were measured for each compound over a range of temperatures (ambient to a maximum of 523 K). A differential scanning calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. Where possible, the critical temperature and critical d. for each compound were determined exptl. The results of the measurements were combined to derive a series of thermophys. properties including critical temperature, critical d., critical pressure, acentric factor, enthalpies of vaporization (restricted to within ± 50 K of the temperature region of the exptl. determined vapor pressures), enthalpies of fusion if solid at 310 K, solubility parameters, and heat capacities along the saturation line. Vapor-pressure representations were derived for each compound All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied except 1-chloro-2-propanol. The compounds studied were benzenamine, butylbenzene, sec-butylbenzene, tert-butylbenzene, 2,2-dimethylbutanoic acid, tridecafluoroheptanoic acid, 2-butyl-2-ethyl-1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1-chloro-2-propanol. This study involved multiple reactions and reactants, such as 2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4COA of Formula: C9H20O2).

2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.COA of Formula: C9H20O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bivar Matias, Stephanie Caroline et al. published their research in Protein Expression and Purification in 2023 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C9H18O5S

Enhancing the expression of multi-antigen chimeric TGAGS/BST protein from Toxoplasma gondii in Escherichia coli BL 21 Star during batch cultivation was written by Bivar Matias, Stephanie Caroline;de Azevedo, Beatriz;da Costa Filho, Jose Daladie Barreto;Lima, Marina Moura;Moura, Andrews Douglas;Arantes Martins, Daniella Regina;de Sousa, Francisco Caninde Junior;Santos, Everaldo Silvino dos. And the article was included in Protein Expression and Purification in 2023.Synthetic Route of C9H18O5S The following contents are mentioned in the article:

Toxoplasmosis, despite advances in science and technol., is a disease that requires attention since there is no vaccine capable of immunizing humans and animals against all isolated types of Toxoplasma gondii. Thus, the use of chimeric proteins, which can contain multiple antigens, is a very promising alternative for the process of obtaining a vaccine and diagnostic test for toxoplasmosis due to the great diversity of antigens presented by T. gondii. In this context, the present study evaluates batch culture strategies in the production of the multi-antigenic chimeric protein TgAGS/BsT from Toxoplasma gondii. Several exploratory cultures were initially carried out to observe the kinetic behavior of E. coli BL21 Star in five different medium compositions without the addition of IPTG (inducer). Cultures of E. coli B21 Star were carried out with 1.0 mM IPTG at different times of initiation of induction (0.5, 1, and 6 h) to evaluate the effects on cell growth, production of the protein of interest, culture pH, and acetic acid formation. The results showed that among the culture media evaluated, 2xTY and TB supplemented with glycerol had the best cell concentration values of 3.42 ± 0.05 g/L and 5.48 ± 0.05 g/L, resp. In the assays induced by IPTG, a higher expression of TgAGS/BsT protein was observed, with induction beginning within 6 h of culture, with a maximum concentration of protein of interest of 1.82 ± 0.02 g/L for the 2xTY and 2.49 ± 0.03 g/L for the TB medium. In addition, later induction by IPTG provided greater stability of plasmid pET-TgAGS, remaining with values above 90% at the end of culture. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Synthetic Route of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lee, Somin et al. published their research in Archives of Toxicology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.COA of Formula: C13H12O2

Pharmacokinetics and toxicity evaluation following oral exposure to bisphenol F was written by Lee, Somin;An, Kyu Sup;Kim, Hye Jin;Noh, Hye Jin;Lee, JaeWon;Lee, Jiho;Song, Kyung Seuk;Chae, Chanhee;Ryu, Hyeon Yeol. And the article was included in Archives of Toxicology in 2022.COA of Formula: C13H12O2 The following contents are mentioned in the article:

Bisphenol F is a substitute material for bisphenol A and is widely used in household products as a raw material for polycarbonate resin, epoxy resin, and plastic reinforcement. It is known to be mainly used in food containers, thermal paper for receipts, and coatings for water pipes. In some countries, bisphenol F has been detected in drinking water and human urine samples. However, due to the lack of safety evaluation data on bisphenol F, it is difficult to establish appropriate guidelines for the proper use of the substance, and social anxiety is increasing accordingly. This study investigated the use, exposure route, and distribution flow of bisphenol F, a household chem. To determine the no-observed-adverse-effect level (NOAEL) and target organ of bisphenol F after exposure, a single-dose oral toxicity, dose-range finding (28 day oral), repeated dose toxicity (90 day oral), and genotoxicity (reverse mutation, chromosomal abnormality, in vivo micronucleus test) tests were performed. The pharmacokinetic profile was also obtained. The test results are as follows: in the pharmacokinetic study, it was confirmed that single oral exposure to BPF resulted in systemic exposure; in single oral dose toxicity test, the approx. LD was found to be 4000 mg/kg and confusion and convulsion was shown in the test animals; NOAEL was determined to be 2 mg/kg/day for male and 5 mg/kg/day for female, and the no-observed-effect level (NOEL) was determined to be 2 mg/kg/day for males and 1 mg/kg/day for females, and the target organ was the small intestine; genotoxicity tests confirmed that BPF does not induce genotoxicity. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8COA of Formula: C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.COA of Formula: C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cellat, Mustafa et al. published their research in Journal of Food Biochemistry in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 27208-80-6

Protective effect of Smilax excelsa L. pretreatment via antioxidant, anti-inflammatory effects, and activation of Nrf-2/ HO -1 pathway in testicular torsion model was written by Cellat, Mustafa;Isler, Cafer Tayer;Uyar, Ahmet;Kuzu, Muesluem;Aydin, Tuba;Etyemez, Muhammed;Tuerk, Erdinc;Yavas, Ilker;Guevenc, Mehmet. And the article was included in Journal of Food Biochemistry in 2022.Related Products of 27208-80-6 The following contents are mentioned in the article:

The protective effects of the ethanol extract of Smilax excelsa L. (SE) leaves were investigated on testicular tissue of rats with a torsion model in this study. The chem. composition of the extract was detected by means of liquid chromatog. with tandem mass spectrometry (LC-MS/MS). SE extract was given for 21 days before torsion was created in the treatment group. The sperm parameters of the torsion group were impaired, and there was an increase in MDA level as well as a decrease in GSH level and GPx activity compared to the control group. TNF-α and NF-κB levels in the torsion group increased as compared to those in the control group. The expression levels of Nrf-2 and HO-1 were lower in the torsion group than those in the control group. The SE pretreatment group has improved sperm, oxidative stress, and inflammatory markers when compared to the torsion group, and the Nrf-2/HO-1 pathway was activated. Practical applications : Smilax excelsa L. is a plant with economic value used in traditional medicine in the treatment of stomachache, bloating, and breast cancer in Northwest Anatolia. It has an antioxidant effect due to the flavonoids and anthocyanins it contains. The protective effect against ischemia-reperfusion-induced tissue and reproductive damage in testicular tissue were demonstrated with the study. When the histol. examinations of the tissues were evaluated, it was found that morphol. structure of the tissues was retained in the treatment group. The findings indicate that SE prevents tissue damage in the torsion model by antioxidant and anti-inflammatory effects and activating Nrf-2/HO-1 pathway. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Related Products of 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Maharjan, Anoth et al. published their research in ACS Synthetic Biology in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Biosynthesis of a Therapeutically Important Nicotinamide Mononucleotide through a Phosphoribosyl Pyrophosphate Synthetase 1 and 2 Engineered Strain of Escherichia coli was written by Maharjan, Anoth;Singhvi, Mamata;Kim, Beom Soo. And the article was included in ACS Synthetic Biology in 2021.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

NMN (NMN), a precursor of NAD+, can be synthesized by the conversion of nicotinamide with the help of nicotinamide phosphoribosyl transferase (NAMPT) via the salvage pathway. NMN has recently gained great attention as an excellent therapeutic option due to its long-term effective pharmacol. activities. In this study, we constructed a recombinant strain of Escherichia coli by inserting NAMPT and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) and PRPS2 (from Homo sapiens) genes to investigate the effect of PRPS1 and PRPS2 on NMN synthesis. The metabolically engineered strain of E. coli BL21 (DE3) exhibited 1.57 mM NMN production in the presence of Mg2+ and phosphates in batch fermentation studies. For further improvement in NMN production levels, effects of different variables were studied using a response surface methodol. approach. A significant increment was achieved with a maximum of 2.31 mM NMN production when supplemented with 1% ribose, 1 mM Mg2+ and phosphate, and 0.5% nicotinamide in the presence of a lactose (1%) inducer. Addnl., insertion of the PRPS1 and PRPS2 genes in the phosphoribosyl pyrophosphate synthesis pathway and individual gene expression studies facilitated a higher NMN production at the intracellular level than the reported studies. The strain exhibited intracellular production of NMN from cheap substrates such as glucose, lactose, and nicotinamide. Hence, the overall optimized process can be further scaled up for the economical production of NMN using a recombinant strain of E. coli BL21 (DE3), which is the future perspective of the current study. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Yuxin et al. published their research in Ultrasonics Sonochemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. Using deep eutectic solvent: optimization, identification, and comparison with traditional methods was written by Liu, Yuxin;Zhe, Wang;Zhang, Ruifen;Peng, Ziting;Wang, Yuxi;Gao, Heqi;Guo, Zhiqiang;Xiao, Juan. And the article was included in Ultrasonics Sonochemistry in 2022.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochems. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesized with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodol. The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27μmol Fe(II)E/g DW) and 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64μmol TE/g DW), closely matching the exptl. results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatog.-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Addnl., DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Yuxin et al. published their research in Ultrasonics Sonochemistry in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.SDS of cas: 27208-80-6

Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. Using deep eutectic solvent: optimization, identification, and comparison with traditional methods was written by Liu, Yuxin;Zhe, Wang;Zhang, Ruifen;Peng, Ziting;Wang, Yuxi;Gao, Heqi;Guo, Zhiqiang;Xiao, Juan. And the article was included in Ultrasonics Sonochemistry in 2022.SDS of cas: 27208-80-6 The following contents are mentioned in the article:

Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochems. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesized with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodol. The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27μmol Fe(II)E/g DW) and 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64μmol TE/g DW), closely matching the exptl. results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatog.-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Addnl., DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6SDS of cas: 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.SDS of cas: 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts