Wang, Liwei team published research in Atmospheric Environment: X in 2021 | 533-73-3

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. COA of Formula: C6H6O3

Wang, Liwei;Slowik, Jay G.;Tong, Yandong;Duan, Jing;Gu, Yifang;Rai, Pragati;Qi, Lu;Stefenelli, Giulia;Baltensperger, Urs;Huang, Ru-Jin;Cao, Junji;Prevot, Andre S. H. research published 《 Characteristics of wintertime VOCs in urban Beijing: Composition and source apportionment》, the research content is summarized as follows. Characteristics and sources of volatile organic compounds (VOCs) were investigated with highly time-resolved measurements by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an urban site in Beijing in winter 2017. During the measurement period, high mixing ratios of VOCs (48.9 ppbv) and trace gases were observed, with alternating episodes of strong haze pollution and clean air. Ten VOC families showed clear dependence on the VOC concentration Aromatics increased the most during haze, with significantly elevated benzene concentration at high VOC concentration, while CxHyO3 and CxHy increased the least. The pos. matrix factorization (PMF) receptor model was applied to the VOC mass spectra, yielding four major VOC factors: traffic emissions (21.0%), solid fuel combustion (SFC, 24.4%), and two oxygenated VOC (OVOC) factors (32.3% and 22.3%). Traffic and solid fuel combustion were dominant during the periods of high total VOC concentration, while the OVOC1 fraction was reduced. Comparisons with organic aerosol (OA) sources showed increased oxygenated organic aerosol (OOA) concentration during high VOC concentration periods, indicating the importance of OVOCs to secondary organic aerosol formation. Furthermore, trajectory anal. showed that most of the clean days were associated with northerly winds with high ratios of OVOC1. In contrast, the haze periods were not only due to high primary emissions under stagnant conditions, but also influenced by air masses from a more regional scale.

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Le team published research in Journal of Medicinal Chemistry in 2017 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., SDS of cas: 7748-36-9

SDS of cas: 7748-36-9, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 7748-36-9, name is Oxetan-3-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Wang, Le;Pratt, John K.;Soltwedel, Todd;Sheppard, George S.;Fidanze, Steven D.;Liu, Dachun;Hasvold, Lisa A.;Mantei, Robert A.;Holms, James H.;McClellan, William J.;Wendt, Michael D.;Wada, Carol;Frey, Robin;Hansen, T. Matthew;Hubbard, Robert;Park, Chang H.;Li, Leiming;Magoc, Terrance J.;Albert, Daniel H.;Lin, Xiaoyu;Warder, Scott E.;Kovar, Peter;Huang, Xiaoli;Wilcox, Denise;Wang, Rongqi;Rajaraman, Ganesh;Petros, Andrew M.;Hutchins, Charles W.;Panchal, Sanjay C.;Sun, Chaohong;Elmore, Steven W.;Shen, Yu;Kati, Warren M.;McDaniel, Keith F. research published 《 Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors》, the research content is summarized as follows. Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A 2-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a Ph pyridazinone fragment with a weak binding affinity (I, Ki = 160 μM). SAR investigation of fragment I, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochem. and cell based assays, e.g. II. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., SDS of cas: 7748-36-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Lai team published research in Metabolism, Clinical and Experimental in 2022 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Formula: C20H34O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 24034-73-9, formula is C20H34O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Formula: C20H34O

Wang, Lai;Zhu, Lijun;Zheng, Zuguo;Meng, Lingchang;Liu, Hanling;Wang, Keke;Chen, Jun;Li, Ping;Yang, Hua research published 《 Mevalonate pathway orchestrates insulin signaling via RAB14 geranylgeranylation-mediated phosphorylation of AKT to regulate hepatic glucose metabolism》, the research content is summarized as follows. Statin use accompanies with increased risk of new onset of type 2 diabetes, however, the underlying mechanisms remain not be fully understood and effective prevention strategies are still lacking. Herein, we find that both pharmacol. and genetic inhibition of GGTase II mimic the disruption of simvastatin on hepatic insulin signaling and glucose metabolism in vitro. AAV8-mediated knockdown of liver RABGGTA, the specific subunit of GGTase II, triggers systemic glucose metabolism disorders in vivo. By adopting a small-scale siRNA screening, we identify RAB14 as a regulator of hepatic insulin signaling and glucose metabolism Geranylgeranylation deficiency of RAB14 inhibits the phosphorylation of AKT (Ser473) and disrupts hepatic insulin signaling and glucose metabolism possibly via impeding mTORC2 complex assembly. Finally, geranylgeranyl pyrophosphate (GGPP) supplementation is sufficient to prevent simvastatin-caused disruption of hepatic insulin signaling and glucose metabolism in vitro. Geranylgeraniol (GGOH), a precursor of GGPP, is able to ameliorate simvastatin-induced systemic glucose metabolism disorders in vivo. In our data indicate that statins-targeted mevalonate pathway regulates hepatic insulin signaling and glucose metabolism via geranylgeranylation of RAB14. GGPP/GGOH supplementation might be an effective strategy for the prevention of the diabetic effects of statins.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Formula: C20H34O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Junhua team published research in Journal of Agricultural and Food Chemistry in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Product Details of C20H34O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 24034-73-9, formula is C20H34O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C20H34O

Wang, Junhua;Zhu, Linghuan;Li, Youran;Xu, Sha;Jiang, Wei;Liang, Chaojuan;Fang, Yakun;Chu, Alex;Zhang, Liang;Ding, Zhongyang;Shi, Guiyang research published 《 Enhancing Geranylgeraniol Production by Metabolic Engineering and Utilization of Isoprenol as a Substrate in Saccharomyces cerevisiae》, the research content is summarized as follows. The amount of geranylgeranyl diphosphate (GGPP) is vital for microbial production of geranylgeraniol (GGOH) in Saccharomyces cerevisiae. In this study, a GGPP synthase with stronger catalytic ability was used to increase the supply of GGPP, and an engineered strain producing 374.02 mg/L GGOH at the shake flask level was constructed. Then, by increasing the metabolic flux of the mevalonate (MVA) pathway and the supply of isopentenyl pyrophosphate (IPP), the titer was further increased to 772.98 mg/L at the shake flask level, and we achieved the highest GGOH titer to date of 5.07 g/L in a 5 L bioreactor. This is the first report on the utilization of isoprenol for increasing the amount of IPP and enhancing GGOH production in S. cerevisiae. In the future, these strategies and engineered strains can be used to enhance the production of other terpenoids in S. cerevisiae.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Product Details of C20H34O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Jingbao team published research in Journal of Molecular Liquids in 2022 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Quality Control of 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Quality Control of 527-07-1

Wang, Jingbao;Zhao, Jingmao;Tabish, Mohammad;Shi, Fan;Cheng, Qi;Peng, Lijun research published 《 Protection of Zn-Mg-Al coated steel corrosion by cerium gluconate in 0.05 M NaCl solution》, the research content is summarized as follows. The application of inhibitor as an efficient method to protect Zn-Mg-Al (ZMA) coated steel is first reported in this work. The inhibition performances of newly synthesized cerium gluconate (CG) for ZMA coated steel in 0.05 M NaCl solution were investigated by SEM (SEM), X-ray photoelectron spectroscope (XPS), electrochem. impedance spectroscopy (EIS) measurements, potentiodynamic polarization (PDP) measurements and neutral salt spray (NSS). The synthesized CG exhibits excellent inhibition efficiency of 98.4% at 200 ppm, which is much better than the individual or combined use of sodium gluconate (SG) and cerium (III) nitrate hexahydrate (CNH). Addnl., CG shows long-term protection for ZMA coated steel. A synergistic inhibition model between Ce oxide/hydroxide precipitation with CG adsorption film is proposed based on the obtained results. This work offers a promising option for the corrosion protection of ZMA coated steel.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Quality Control of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Jie team published research in Chemical Communications (Cambridge, United Kingdom) in 2020 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application In Synthesis of 72824-04-5

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 72824-04-5, formula is C9H17BO2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Application In Synthesis of 72824-04-5

Wang, Jie;Zhang, Qingxia;Li, Yao;Liu, Xiangshuai;Li, Xin;Cheng, Jin-Pei research published 《 Bi(OAc)3/chiral phosphoric acid catalyzed enantioselective allylation of isatins》, the research content is summarized as follows. An efficient protocol for construction of chiral 3-allyl-3-hydroxyoxindoles I (R = 4-Cl, 5-Br, 6-F, etc.; R1 = Me, Ph, naphthalen-1-ylmethyl, etc.) via the enantioselective allylation reaction of isatins II and allylboronates CH2=CH(R2)C(R3)(R4)B(-OC(CH3)2C(CH3)2O-) (R2 = R3 = R4 = H, Me) catalyzed by a simple binary acid Bi(OAc)3/chiral phosphoric acid system under mild conditions was disclosed. The synthetic utility of this strategy has been demonstrated through the formal synthesis of ent-CPC-1.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application In Synthesis of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Jia-Xin team published research in Organic Letters in 2022 | 16545-68-9

Product Details of C3H6O, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 16545-68-9, formula is C3H6O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C3H6O

Wang, Jia-Xin;Ge, Wei;Fu, Ming-Chen;Fu, Yao research published 《 Photoredox-Catalyzed Allylic Defluorinative Alkoxycarbonylation of Trifluoromethyl Alkenes through Intermolecular Alkoxycarbonyl Radical Addition》, the research content is summarized as follows. Herein, a photoredox-catalyzed allylic defluorinative alkoxycarbonylation of trifluoromethyl alkenes ArC(CF3):CH2 (Ar = 4-BrC6H4, naphthalen-2-yl, 6-methoxypyridin-3-yl, etc.) enabled by intermol. alkoxycarbonyl radical addition is disclosed. A wide variety of alc. oxalate derivatives ROC(O)CO2H (R = Me, t-Bu, cyclopentyl, L-menthyl, N-Boc-piperidin-4-yl, etc.) was amenable, affording various β-gem-difluoroalkene esters ArC(:CF2)CH2COOR with excellent functional group tolerance. Notably, the potential synthetic value of this method is highlighted by successful late-stage modification for bioactive mols.

Product Details of C3H6O, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Dongying team published research in International Journal of Biological Macromolecules in 2020 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Related Products of 24034-73-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 24034-73-9

Wang, Dongying;Dong, Ying;Chen, Xinpei;Liu, Yang;Wang, Junhui;Wang, Xuede;Wang, Chenxin;Song, Hongquan research published 《 Incorporation of apricot (Prunus armeniaca) kernel essential oil into chitosan films displaying antimicrobial effect against Listeria monocytogenes and improving quality indices of spiced beef》, the research content is summarized as follows. The spiced beef is exposed to the invading of spoilage bacteria including Listeria monocytogenes. In the present study, the antimicrobial effects against L. monocytogenes of the chitosan (CS) films incorporated with apricot (Prunus armeniaca) kernel essential oil (AKEO) at 0.5% and 1.0% were demonstrated in solid medium, micro-atm., liquid media and spiced beef. In the refrigerated storage for 24 days at 4°C, compared with the control sample, the levels of peroxide value (PV) and thiobarbituric acid (TBA) of the spiced beef packed by CS films incorporated AKEO at 0.5% and 1.0% were decreased to 4.8 and 3.6 meq peroxide/kg, and 0.5 and 0.4 mg MDA/kg (p < 0.5 or p < 0.1), and the levels for pH and total carbonyls (TC) were decreased to 5.8 and 5.7, and 0.7 and 0.6 nmol/mg protein (p < 0.5 or p < 0.1) on the 24th day, resp. Furthermore, the sensory evaluation exhibited that the spiced beef packed by CS films incorporated AKEO at 1.0% had better sensory attributes including taste, color, texture and overall acceptance during the whole storage period. Consequently, CS films incorporated AKEO at 1.0% can be developed to be one packaging material for spiced beef.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Related Products of 24034-73-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Chuan team published research in Frontiers in Chemistry (Lausanne, Switzerland) in 2022 | 527-07-1

Name: Sodium Gluconate, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Name: Sodium Gluconate

Wang, Chuan;Jiang, Rui;Yang, Jinxing;Wang, Pinshan research published 《 Enhanced heterogeneous Fenton degradation of organic pollutants by CRC/Fe3O4 catalyst at neutral pH》, the research content is summarized as follows. Fe3O4-based heterogeneous Fenton catalysts have been widely employed for degrading organic pollutants, however it is challenging to use them in highly efficient and recyclable application in wastewater treatment. In this work, carboxylate-rich carbon (CRC)-modified Fe3O4 magnetic particles are prepared by the sol-gel self-combustion method, where CRC is obtained from the carbonization of sodium gluconate. The CRC/Fe3O4 catalyst exhibits high heterogeneous Fenton degradation performance. The complete 10mg L-1 methylene blue (MB) removal is achieved in 180 min under conditions of 10mMH2O2 and 1.00 g of L-1 CRC/Fe3O4 at neutral pH. After five cycles, the structure and morphol. of CRC/Fe3O4 composites remained unchanged and the catalytic activity also remained unaltered. Moreover, phenol, benzoic acid (BA), sulfamethazine (SMT), and tetracycline (TC) were also degraded in the heterogeneous Fenton reaction using CRC/Fe3O4 as a catalyst. The strong coordinating ability of -COOH/ -COO- functionalities of CRC formed strong bonds with Fe(II/III) ions on the surfaces of Fe3O4 particles, which was conducive to adsorption of organic matter on the surface of the catalyst and promoted the occurrence of heterogeneous Fenton reactions. It was found that CRC/Fe3O4 had higher removal rates for the adsorptive exclusions of pollutants, such as TC and MB, whereas there were lower removal rates for phenol, BA, and SMT. This work brings potential insights for development of a novel adsorption-enhanced heterogeneous Fenton reaction for wastewater treatment.

Name: Sodium Gluconate, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Chao team published research in Journal of Nuclear Medicine in 2021 | 647-42-7

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 647-42-7, formula is C8H5F13O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Related Products of 647-42-7

Wang, Chao;Leach, Benjamin I.;Lister, Deanne;Adams, Stephen R.;Xu, Hongyan;Hoh, Carl;McConville, Patrick;Zhang, Jing;Messer, Karen;Ahrens, Eric T. research published 《 Metallofluorocarbon nanoemulsion for inflammatory macrophage detection via PET and MRI》, the research content is summarized as follows. Inflammation is associated with a range of serious human conditions, including autoimmune and cardiovascular diseases and cancer. The ability to image active inflammatory processes greatly enhances our ability to diagnose and treat these diseases at an early stage. We describe mol. compositions enabling sensitive and precise imaging of inflammatory hotspots in vivo. A functionalized nanoemulsion with a fluorocarbon-encapsulated radiometal chelate (FERM) was developed to serve as a platform for multimodal imaging probe development. The 19F-containing FERM nanoemulsion encapsulates 89Zr in the fluorous oil via a fluorinated hydroxamic acid chelate. Simple mixing of the radiometal with the preformed aqueous nanoemulsion before use yields FERM, a stable in vivo cell tracer, enabling whole-body 89Zr PET and 19F MRI after a single i.v. injection. The FERM nanoemulsion was intrinsically taken up by phagocytic immune cells, particularly macrophages, with high specificity. FERM stability was demonstrated by a high correlation between the 19F and 89Zr content in the blood (correlation coefficient > 0.99). Image sensitivity at a low dose (37 kBq) was observed in a rodent model of acute infection. The versatility of FERM was further demonstrated in models of inflammatory bowel disease and 4T1 tumor. Multimodal detection using FERM yields robust whole-body lesion detection and leverages the strengths of combined PET and 19F MRI. The FERM nanoemulsion has scalable production and is potentially useful for precise diagnosis, stratification, and treatment monitoring of inflammatory diseases.

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts