Xu, Dengfeng team published research in Molecular Nutrition & Food Research in 2021 | 533-73-3

Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 533-73-3, formula is C6H6O3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Name: Benzene-1,2,4-triol

Xu, Dengfeng;Wang, Shaokang;Feng, Meiyuan;Shete, Varsha;Chu, Yifang;Kamil, Alison;Yang, Chao;Liu, Hechun;Xia, Hui;Wang, Xin;Sun, Guiju;Yang, Yuexin research published 《 Serum Metabolomics Reveals Underlying Mechanisms of Cholesterol-Lowering Effects of Oat Consumption: A Randomized Controlled Trial in a Mildly Hypercholesterolemic Population》, the research content is summarized as follows. The purpose of this study is to examine the effects of oat supplementation on serum lipid in a population of adults with mild hypercholesterolemia and reveal the underlying mechanisms with serum untargeted metabolomics. In this placebo-controlled trial, 62 participants from Nanjing, China, with mild elevations in cholesterol are randomly assigned to receive 80 g oats (containing 3 g beta-glucan) or rice daily for 45 days. Fasting blood samples are collected at the beginning, middle, and end of the trial. Compared with the rice group, oat consumption significantly decreases serum total cholesterol (TC) (-8.41%, p = 0.005), low-d. lipoprotein cholesterol (LDL-c) (-13.93%, p = 0.001), and non high-d. lipoprotein cholesterol (non-HDL-c) (-10.93%, p = 0.017) levels. There are no significant between-group differences in serum triglyceride (TG), apolipoprotein B (Apo B), glycated albumin, or fasting blood glucose levels. An orthogonal partial least squares discriminant anal. (OPLS-DA) suggests a clear separation in metabolic profiles between the groups after the intervention. Twenty-one metabolites in the oat group are significantly different from those in the rice group, among which 14 metabolites show a decreased trend. In comparison, seven metabolites show an increased trend. Correlations anal. from both groups indicate that most metabolites [e.g., sphinganine and phosphatidylcholine (PC)(20:5(5Z,8Z,11Z,14Z,17Z)/20:1(11Z))] have pos. correlations with serum cholesterol levels. Kyoto Encyclopedia of Gene and Genomes pathway anal. suggests that oat consumption regulated glycerophospholipid, alanine, aspartate and glutamate, sphingolipid, and retinol metabolism Oat consumption has beneficial effects on serum lipids profiles. The underlying mechanisms involve glycerophospholipid, alanine, aspartate and glutamate, sphingolipid, and retinol metabolism in adults.

Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiong, Ying team published research in Organic Letters in 2021 | 72824-04-5

COA of Formula: C9H17BO2, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. COA of Formula: C9H17BO2

Xiong, Ying;Lin, Han;Zhu, Chang-Liang;Chen, Yong-Hong;Ye, Rong;Hu, Guan-Wen;Xie, Jian-Hua;Zhou, Qi-Lin research published 《 Asymmetric Hydrogenation of Racemic α-Aryl-β-ethoxycarbonyl Cyclopentanones via Dynamic Kinetic Resolution and Its Application to the Synthesis of (+)-Burmaniol A》, the research content is summarized as follows. An efficient asym. hydrogenation of racemic α-Aryl-β-ethoxycarbonyl cyclopentanones rac-I (R = C6H5, 2-ClC6H4, 2-naphthyl, etc.; n = 1, 2) via dynamic kinetic resolution is reported. Via catalysis by a chiral iridium Ir-SpiroPAP catalyst, a range of racemic α-Aryl-β-ethoxycarbonyl cyclopentanones rac-I were hydrogenated to the corresponding ester-functionalized chiral 2-arylcyclopentanols cis, trans-II with three contiguous stereocenters in high yields with excellent enantio- and diastereoselectivities. This method was successfully applied in the enantioselective synthesis of cyclopentane-based γ-amino ester III/alc. derivatives IV and phenylpropanoid (+)-burmaniol A.

COA of Formula: C9H17BO2, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiong, Kangning team published research in Chemical Engineering Research and Design in 2020 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Xiong, Kangning;Chen, Yun research published 《 Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling》, the research content is summarized as follows. In this work, tangerine peel oil extraction is carried out by applying the supercritical carbon dioxide (scCO2) extraction The effect of extraction parameters on extraction yield was discussed, at particle size of 0.2-1.0mm, temperature of 35-55°C, pressure of 10-30MPa and extraction time of 0-180min. And the response surface methodol. (RSM) with a Box-Behnken Design (BBD) was applied to obtain the optimal extraction conditions. Based on this investigation, it is indicated that the optimized operation conditions for tangerine peel oil extraction was temperature 45°C, pressure 14MPa and extraction time 147min, and the largest exptl. yield of tangerine peel oil was 1.34%. Moreover, a gas chromatog.-mass spectrometry (GC-MS) anal. was used to determine the chem. composition of tangerine peel oil. The major compounds found in the tangerine peel oil were n-hexadecanoic acid (14.62%), linoleic acid (32.3%) and oleic acid (20.42%). Finally, two kinetic models were used to correlate the exptl. results, and the parameters in both models have been optimized by simulating annealing (SA) algorithm. The results show that the overall average absolute relative deviation (AARD) values of model I and model II are 3.42% and 2.76%, resp. The AARD value of model II is smaller and the application of model II is more extensive. The extraction parameters optimization, chem. composition anal. and kinetics modeling can provide theor. basis for industrialization of extraction of tangerine peel oil.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xie, Qiqiang team published research in Journal of the American Chemical Society in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 72824-04-5, name is 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Xie, Qiqiang;Dong, Guangbin research published 《 Programmable Ether Synthesis Enabled by Oxa-Matteson Reaction》, the research content is summarized as follows. The Matteson-type reactions have received increasing interest in constructing complex organic mols. via iterative synthetic strategies; however, the current tactics are almost exclusively based on homologation of pure C chains. Here, the authors report the development of the oxa-Matteson reaction that enables sequential O and carbenoid insertions into diverse alkyl- and arylboronates. It offers a distinct entry to a wide range of B-substituted ethers. The utilities of this method are demonstrated in the preparation of various functional ethers, the asym. synthesis of an acetyl-CoA-carboxylase inhibitor, and the programmable construction of polyethers.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiao, Jianzhuang team published research in Journal of Cleaner Production in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Reference of 527-07-1

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Reference of 527-07-1

Xiao, Jianzhuang;Zou, Shuai;Ding, Tao;Duan, Zhenhua;Liu, Qiong research published 《 Fiber-reinforced mortar with 100% recycled fine aggregates: A cleaner perspective on 3D printing》, the research content is summarized as follows. The huge labour-consumption, construction and demolition (C&D) waste pollution, and shortage of river sand have become increasingly serious problems facing the construction industry. Therefore, the possibility of fully replacing natural fine aggregates (NFA) with recycled fine aggregates (RFA) for fiber-reinforced 3D mortar printing (3DMP) was carefully evaluated by Digital Image Correlation (DIC) technique, mech. testing, and microscopic anal. in this study. The results show that the 100% replacement of RFA had very limited impact on the failure pattern of the 3D printed (3DP) specimen, while the addition of 1% polyethylene (PE) fibers would change the failure pattern of specimens from brittle to ductile. This study also defines the parameter of anisotropic degree to reflect the anisotropy. It is found that the anisotropic degree of 3DP specimens was different under various loading conditions and obviously affected by both RFA and fibers. The microscopic anal. indicated that the effect of RFA on the 3DP specimens was mainly due to the porous structure and the existence of initial micro-cracks, while the effect of fibers was mainly due to the interfacial bond between PE fibers and matrix. This study also found that after reinforcing with appropriate fibers, the 3DP mortar mixed with 100% RFA has higher mech. properties and better deformation ability than the fiber-free mortar with 100% NFA. It is believed that the 100% replacement of RFA is applicable in 3DMP, which will bring significant benefits to the cleaner production and sustainable development of the construction industry.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Reference of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiang, Fan team published research in Progress in Organic Coatings in 2022 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Synthetic Route of 647-42-7

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 647-42-7, formula is C8H5F13O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Synthetic Route of 647-42-7

Xiang, Fan;Zong, Yakun;Chen, Mingqiang;Li, Zhanxiong research published 《 Preparation of super-hydrophobic cotton fabrics with the controllable roughening fiber surface by carbene polymerization grafting》, the research content is summarized as follows. Superhydrophobic cotton fabrics were successfully prepared by grafting modification of cotton fabrics through carbene polymer induced crystallization and self-assembly. The structures and properties of grafted polymer crystals on the surface of cotton fabrics were examined by SEM, FT-IR and NMR. The surface grafting positions with diazo active groups were pre-constructed on the fibers. The 3,3,4,4,5,5,6,6,6-nonfluorohexyl diazoacetate and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl diazoacetate were synthesized as precursors followed by carbene grafting to fiber. Under different reaction conditions, the polymer crystallized on the fiber surface and produced different morphologies. When 3,3,4,4,5,5,6,6,6-nonfluorohexyl diazoacetate was used as the precursor and THF as the solvent, the grafted cotton fabric exhibited excellent hydrophobic properties with a water contact angle of 152°. When 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl diazoacetate was used as the grafting precursor, THF or THF/EtOH mixed solvent was used as the reaction medium, the contact angle of the as-prepared cotton fabric to water was measured to be 151° and 154°, resp. During the carbene grafting polymerization, the solvent has a significant influence on the morphol. of the grafted polymer. The WCA and EDS results suggest that the synergistic effect between the rough structure of the grafted cotton fabric surface and the low surface energy of fluorine element made the fabric super-hydrophobic.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Synthetic Route of 647-42-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, Yun team published research in PLoS One in 2021 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Application In Synthesis of 533-73-3

Application In Synthesis of 533-73-3, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 533-73-3, name is Benzene-1,2,4-triol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Xia, Yun;Zhang, Xuxiang;Jiang, Mingxin;Zhang, Hongbo;Wang, Yinfeng;Zhang, Yuyu;Seviour, Robert;Kong, Yunhong research published 《 In vitro co-metabolism of epigallocatechin-3-gallate (EGCG) by the mucin-degrading bacterium Akkermansia muciniphila》, the research content is summarized as follows. Akkermansia muciniphila is a Gram-neg. bacterium that resides within the gut mucus layer, and plays an important role in promoting gut barrier integrity, modulating the immune response and inhibiting gut inflammation. Growth stimulation of A. muciniphila by polyphenols including epigallocatechin-3-gallate (EGCG) from difference sources is well-documented. However, no published in vitro culture data on utilization of polyphenols by A. muciniphila are available, and the mechanism of growth-stimulating prebiotic effect of polyphenols on it remains unclear. Here in vitro culture studies have been carried out on the metabolism of EGCG by A. muciniphila in the presence of either mucin or glucose. We found that A. muciniphila did not metabolize EGCG alone but could co-metabolize it together with both these substrates in the presence of mineral salts and amino acids for mucin and protein sources for glucose. Our metabolomic data show that A. muciniphila converts EGCG to gallic acid, epigallocatechin, and (-)-epicatechin through ester hydrolysis. The (-)-epicatechin formed is then further converted to hydroxyhydroquinone. Co-metabolism of A. muciniphila of EGCG together with either mucin or glucose promoted substantially its growth, which serves as a further demonstration of the growth-promoting effect of polyphenols on A. muciniphila and provides an important addition to the currently available proposed mechanisms of polyphenolic prebiotic effects on A. muciniphila.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Application In Synthesis of 533-73-3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, X. Y. team published research in Russian Journal of Organic Chemistry in 2020 | 7748-36-9

Synthetic Route of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 7748-36-9, formula is C3H6O2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Synthetic Route of 7748-36-9

Xia, X. Y.;Sun, W.;He, W.;Feng, Y.;Zhan, L.;Luo, Y. research published 《 A Modified Synthesis of Oxetan-3-ol》, the research content is summarized as follows. A highly regioselective ring opening reaction of terminal epoxides with 2-bromobenzoic acid catalyzed by tetrabutylammonium bromide was accomplished. The procedure is operationally simple and practical for the synthesis of a series of β-hydroxy esters. Using this protocol, oxetan-3-ol could be prepared efficiently in a good yield.

Synthetic Route of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, Mingchen team published research in Journal of Polymers and the Environment in 2022 | 527-07-1

Application of C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Application of C6H11NaO7, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Xia, Mingchen;Zhang, Shishi;Shen, Li;Yu, Runlan;Liu, Yuandong;Li, Jiaokun;Wu, Xueling;Chen, Miao;Qiu, Guanzhou;Zeng, Weimin research published 《 Optimization and Characterization of an Antioxidant Exopolysaccharide Produced by Cupriavidus pauculus 1490》, the research content is summarized as follows. In the present study, exopolysaccharides (EPS) production by Cupriavidus pauculus 1490 was optimized by response surface methodol. The results showed that sodium gluconate (4.15 g/L), NH4Cl (0.52 g/L), and Na2HPO4·12H2O (0.04 g/L) were the optimal medium components and concentrations The actual EPS yield of 293.2 m g/L in the optimized medium was in close agreement with the predicted value of 283.35 m g/L. Anal. of fourier transform IR spectroscopy indicated the EPS contained abundant functional groups, such as -OH, C=O and C-O-C, and all of them were attributed to the characteristics of polysaccharides. Mannose, glucuronic acid, glucose and xylose were detected as the main monosaccharide composition of EPS. Rheol. anal. suggested that the rheogram of EPS has similar trend with Xanthan and presented the property of non-Newtonian fluid. Moreover, the addition of NaCl and KCl would partly weaken the shear stress of EPS. Three in vitro assays were conducted to evaluate the antioxidant potential of the EPS. Results demonstrated that the EPS possessed scavenging capacity on hydroxyl radical, DPPH radical and superoxide anion radical in a dose-dependent way. As indicated by above results, the EPS isolated from C. pauculus 1490 might serve as a potential antioxidant agent to be applied in nutraceutical and pharmaceutical industries.

Application of C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, Mingchen team published research in Chemosphere in 2022 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 527-07-1

Xia, Mingchen;Zhou, Han;Amanze, Charles;Hu, Lan;Shen, Li;Yu, Runlan;Liu, Yuandong;Chen, Miao;Li, Jiaokun;Wu, Xueling;Qiu, Guanzhou;Zeng, Weimin research published 《 A novel polysaccharides-based bioflocculant produced by Bacillus subtilis ZHX3 and its application in the treatment of multiple pollutants》, the research content is summarized as follows. A high bioflocculant-producing bacterial strain was identified and named Bacillus subtilis ZHX3. Single-factor experiments suggested that 10 g/L starch and 5 g/L yeast extract were optimal for strain ZHX3 to produce bioflocculant MBF-ZHX3. The maximum flocculating rate reached 95.5%, and 3.14 g/L product was extracted after 3 days of cultivation. MBF-ZHX3 was mainly composed of polysaccharides (77.2%) and protein (14.8%). The polysaccharides contained 28.9% uronic acid and 3.7% amino sugar. Rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid in a molar ratio of 0.35:1.83:3.09:12.66:0.46:3.81 were detected. MBF-ZHX3 had a mol. weight of 10,028 Da and contained abundant groups (-OH, C=O, >P=O, C-O-C) contributing to flocculation. Adsorption and bridging was considered as the main flocculation mechanism. MBF-ZHX3 was more effective in decolorizing dyes, removing heavy metals and flotation reagents compared to polyacrylamide. The results implied that MBF-ZHX3 has the potential to substitute polyacrylamide in wastewater treatment because of its excellent biol. and environmental benefits.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts