Gou, Quan’s team published research in Organic Letters in 2021-01-01 | CAS: 505-10-2

Organic Letters published new progress about Arylation. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, HPLC of Formula: 505-10-2.

Gou, Quan published the artcileC(sp3)-H Monoarylation of methanol enabled by a bidentate auxiliary, HPLC of Formula: 505-10-2, the main research area is arylmethanol preparation methanol directing group monoarylation palladium catalysis.

With the assistance of a practical directing group (COAQ), the first catalytic protocol for the palladium-catalyzed C(sp3)-H monoarylation of methanol has been developed, offering an invaluable synthesis means to establish extensive derivatives of crucial arylmethanol functional fragments. Furthermore, the gram-scale reaction, broad substrate scope, excellent functional group compatibility, and even the practical synthesis of medicines further demonstrate the usefulness of this strategy.

Organic Letters published new progress about Arylation. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, HPLC of Formula: 505-10-2.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gottardi, Davide’s team published research in Food Research International in 2022-09-30 | CAS: 505-10-2

Food Research International published new progress about Autolysis. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Name: 3-(Methylthio)propan-1-ol.

Gottardi, Davide published the artcileSublethal HPH treatment is a sustainable tool that induces autolytic-like processes in the early gene expression of Saccharomyces cerevisiae, Name: 3-(Methylthio)propan-1-ol, the main research area is Saccharomyces HPH treatment autolytic processes gene expression; Autolysis; Gene expression; High-pressure homogenization; Saccharomyces cerevisiae; Volatile molecule profiles.

Sublethal HPH treatments have been demonstrated to impact the technol. properties and functions of treated microorganisms by inducing specific enzymes/genes or modulating membrane structures and inducing autolysis. In this work, the early effects of a 100 MPa HPH treatment on the winery starter Saccharomyces cerevisiae ALEAFERM AROM grown in synthetic must were assessed. While there were no differences in cell cultivability during the first 48 h between treated and untreated cells, a reduction in volatile metabolites released by HPH-treated cells during the first 2 h was observed This reduction was only temporary since after 48 h, volatile mols. reached similar or even higher concentrations compared with the control. Moreover, the gene expression response of HPH-treated cells was evaluated after 1 h of incubation and compared with that of untreated cells. A massive rearrangement of gene expression was observed with the identification of 1220 differentially expressed genes (DEGs). Most of the genes related to energetic metabolic pathways and ribosome structure were downregulated, while genes involved in ribosome maturation, transcription, DNA repair, response to stimuli and stress were upregulated. These findings suggest that HPH induces or promotes an autolytic-like behavior that can be exploited in winemaking.

Food Research International published new progress about Autolysis. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Name: 3-(Methylthio)propan-1-ol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chitarrini, Giulia’s team published research in Molecules in 2020 | CAS: 505-10-2

Molecules published new progress about Beverages. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, SDS of cas: 505-10-2.

Chitarrini, Giulia published the artcileVolatile profile of mead fermenting blossom honey and honeydew honey with or without Ribes nigrum, SDS of cas: 505-10-2, the main research area is Ribes nigrum mead fermenting blossom honeydew honey volatile profile; black currant; fermentation; gas chromatography-mass spectrometry; honey.

Mead is a not very diffused alc. beverage and is obtained by fermentation of honey and water. Despite its very long tradition, little information is available on the relation between the ingredient used during fermentation and the aromatic characteristics of the fermented beverage outcome. In order to provide further information, multi-floral blossom honey and a forest honeydew honey with and without the addition of black currant during fermentation were used to prepare four different honey wines to be compared for their volatile organic compound content. Fermentation was monitored, and the total phenolic content (Folin-Ciocalteu), volatile organic compounds (HS-SPME-GC-MS), together with a sensory evaluation on the overall quality (44 nontrained panelists) were measured for all products at the end of fermentation A higher total phenolic content resulted in honeydew honey meads, as well as the correspondent honey wine prepared with black currant. A total of 46 volatile organic compounds for pre-fermentation samples and 62 for post-fermentation samples were identified belonging to higher alcs., organic acids, esters, and terpenes. The sensory anal. showed that the difference in meads made from blossom honey and honeydew honey was perceptible by the panelists with a general greater appreciation for the traditional blossom honey mead. These results demonstrated the influences of different components in meads, in particular, the influence of honey quality. However, further studies are needed to establish the relationship between the chem. profile and mead flavor perception.

Molecules published new progress about Beverages. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, SDS of cas: 505-10-2.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cheng, Shih-Chun’s team published research in Metabolomics in 2019-11-30 | CAS: 97-67-6

Metabolomics published new progress about Algorithm. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Computed Properties of 97-67-6.

Cheng, Shih-Chun published the artcileMetabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy, Computed Properties of 97-67-6, the main research area is metabolome biomarker cervicovaginal fluid endometrial cancer NMR spectroscopy; Biomarkers; Endometrial neoplasms; Magnetic resonance spectroscopy; Metabolomics.

Endometrial cancer (EC) is one of the most common gynecol. neoplasms in developed countries but lacks screening biomarkers. We aim to identify and validate metabolomic biomarkers in cervicovaginal fluid (CVF) for detecting EC through NMR (NMR) spectroscopy. We screened 100 women with suspicion of EC and benign gynecol. conditions, and randomized them into the training and independent testing datasets using a 5:1 study design. CVF samples were analyzed using a 600-MHz NMR spectrometer equipped with a cryoprobe. Four machine learning algorithms-support vector machine (SVM), partial least squares discriminant anal. (PLS-DA), random forest (RF), and logistic regression (LR), were applied to develop the model for identifying metabolomic biomarkers in cervicovaginal fluid for EC detection. A total of 54 women were eligible for the final anal., with 21 EC and 33 non-EC. From 29 identified metabolites in cervicovaginal fluid samples, the top-ranking metabolites chosen through SVM, RF and PLS-DA which existed in independent metabolic pathways, i.e. phosphocholine, malate, and asparagine, were selected to build the prediction model. The SVM, PLS-DA, RF, and LR methods all yielded area under the curve values between 0.88 and 0.92 in the training dataset. In the testing dataset, the SVM and RF methods yielded the highest accuracy of 0.78 and the specificity of 0.75 and 0.80, resp. Phosphocholine, asparagine, and malate from cervicovaginal fluid, which were identified and independently validated through models built using machine learning algorithms, are promising metabolomic biomarkers for the detection of EC using NMR spectroscopy.

Metabolomics published new progress about Algorithm. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Computed Properties of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Zhu’s team published research in Chemical Science in 2021 | CAS: 111-87-5

Chemical Science published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Recommanded Product: n-Octanol.

Liu, Zhu published the artcileAn octanol hinge opens the door to water transport, Recommanded Product: n-Octanol, the main research area is octanol water transport phase boundary.

Despite their prevalent use as a surrogate for partitioning of pharmacol. active solutes across lipid membranes, the mechanism of transport across water/octanol phase boundaries has remained unexplored. Using mol. dynamics, graph theor., cluster anal., and Langevin dynamics, we reveal an elegant mechanism for the simplest solute, water. Self-assembled octanol at the interface reversibly binds water and swings like the hinge of a door to bring water into a semi-organized second interfacial layer (a “”bilayer island””). This mechanism is distinct from well-known lipid flipping and water transport processes in protein-free membranes, highlighting important limitations in the water/octanol proxy. Interestingly, the collective and reversible behavior is well-described by a double well potential energy function, with the two stable states being the water bound to the hinge on either side of the interface. The function of the hinge for transport, coupled with the underlying double well energy landscape, is akin to a mol. switch or shuttle that functions under equilibrium and is driven by the differential free energies of solvation of H2O across the interface. This example successfully operates within the dynamic motion of instantaneous surface fluctuations, a feature that expands upon traditional approaches toward controlled solute transport that act to avoid or circumvent the dynamic nature of the interface.

Chemical Science published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Recommanded Product: n-Octanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qian, Jie’s team published research in Food and Chemical Toxicology in 2022-10-31 | CAS: 111-87-5

Food and Chemical Toxicology published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Safety of n-Octanol.

Qian, Jie published the artcilePredictive and explanatory themes of NOAEL through a systematic comparison of different machine learning methods and descriptors, Safety of n-Octanol, the main research area is machine learning NOAEL food additive cosmetic; Cheminformatics; Food additives; Machine learning; NOAEL; Sub-chronic; Toxicity.

No observed adverse effect level (NOAEL) is an identified dose level which used as a point of departure to infer a safe exposure limit of chems., especially in food additives and cosmetics. Recently, in silico approaches have been employed as effective alternatives to determine the toxicity endpoints of chems. instead of animal experiments Several acceptable models have been reported, yet assessing the risk of repeated-dose toxicity remains inadequate. This study established robust machine learning predictive models for NOAEL at different exposure durations by constructing high-quality datasets and comparing different kinds of mol. representations and algorithms. The features of mol. structures affecting NOAEL were explored using advanced cheminformatics methods, and predictive models also communicated the NOAEL between different species and exposure durations. In addition, a NOAEL prediction tool for chem. risk assessment is provided. We hope this study will help researchers easily screen and evaluate the subacute and sub-chronic toxicity of disparate compounds in the development of food additives in the future.

Food and Chemical Toxicology published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Safety of n-Octanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hero, Eirik H.’s team published research in Chemical Engineering & Technology in 2019 | CAS: 111-87-5

Chemical Engineering & Technology published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, COA of Formula: C8H18O.

Hero, Eirik H. published the artcileDetermination of Breakage Parameters in Turbulent Fluid-Fluid Breakage, COA of Formula: C8H18O, the main research area is breakage particle turbulent fluid size distribution oil droplet.

Numerous sets of single-particle breakage experiments are required to provide a sufficient database for improving the modeling of fluid particle breakage mechanisms. This work focuses on the interpretation of the phys. breakage events captured on video. To extract the necessary information required for modeling the mechanisms of the fluid particle breakage events in turbulent flows, a well-defined image anal. procedure is necessary. Two breakage event definitions are considered, namely, initial breakup and cascade breakup. The reported breakage time, the number of daughter particles created, and the daughter size distribution are significantly affected by the definition used. For each breakage event definition, an image anal. procedure is presented.

Chemical Engineering & Technology published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, COA of Formula: C8H18O.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fang, L.’s team published research in Applied Catalysis, B: Environmental in 2021-06-05 | CAS: 111-87-5

Applied Catalysis, B: Environmental published new progress about Amination. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, COA of Formula: C8H18O.

Fang, L. published the artcileHighly selective Ru/HBEA catalyst for the direct amination of fatty alcohols with ammonia, COA of Formula: C8H18O, the main research area is ruthenium HBEA catalyst amination fatty alc ammonia.

The present study describes the synthesis of primary amines from long-chain fatty alcs. and ammonia using supported ruthenium catalysts over different acid supports, including a variety of zeolites with different topologies and Si/Al ratios. The morphol., acidity and location of ruthenium in the catalysts was studied in detail by combining XRD, BET, HR-TEM, NH3-TPD, octylamine-TPD, H2-TPR, XPS, EXAFS / XANES, 27Al MAS NMR and TGA. In particular, Ru/HBEA (Si/Al = 25) with 5 wt% Ru afforded more than 90% conversion and 90% selectivity to 1-octylamine in the liquid-phase amination reaction of 1-octanol with ammonia at 180°C in a batch reactor. The high selectivity of Ru/HBEA (Si/Al = 25) can be explained by the presence of Bronsted / Lewis acid centers with medium strength in the proximity of ruthenium nanoparticles. The catalyst was further tested in a pre-pilot continuous stirred-tank reactor (2 L) with flash separation of 1-octylamine. In this configuration, a steady 92% selectivity of octylamine was obtained at 87% 1-octanol conversion during 120 h on steam. The catalyst kept its integrity during the reaction.

Applied Catalysis, B: Environmental published new progress about Amination. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, COA of Formula: C8H18O.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Niu, Feng’s team published research in Green Chemistry in 2020 | CAS: 111-87-5

Green Chemistry published new progress about Amination. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Application of n-Octanol.

Niu, Feng published the artcileA multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts, Application of n-Octanol, the main research area is alumina supported bismuth promoted cobalt catalyst alc amination.

Promotion with small amounts of different elements is an efficient strategy for the enhancement of the performance of many heterogeneous catalysts. Supported cobalt catalysts exhibit significant activity in the synthesis of primary amines via alc. amination with ammonia, which is an economically efficient and environmentally friendly process. Insufficient selectivity to primary amines, low activity and fast cobalt catalyst deactivation remain serious issues restricting the application of alc. amination in the industry. In this work, we have discovered the multifaceted role of the bismuth promoter, which is highly mobile under reaction conditions, in 1-octanol amination over supported cobalt catalysts. First, the overall reaction rate was enhanced more than twice on promotion with bismuth. Second, the selectivity to primary amines increased 6 times in the presence of Bi at high alc. conversion. Finally, the bismuth promotion resulted in extremely high stability of the cobalt catalyst. Characterization by XRD, temperature programmed reduction, STEM, CO chemisorption, BET, TGA and FTIR has showed that the enhancement of the catalytic performance on promotion with bismuth is due to better cobalt reducibility, easy removal of strongly adsorbed intermediates and products by the mobile promoter and suppression of amine coupling reactions resulting in secondary and tertiary amines.

Green Chemistry published new progress about Amination. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Application of n-Octanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ibanez, J.’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2019-02-15 | CAS: 111-87-5

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about Amination. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Product Details of C8H18O.

Ibanez, J. published the artcileDirect amination of 1-octanol with NH3 over Ag-Co/Al2O3: Promoting effect of the H2 pressure on the reaction rate, Product Details of C8H18O, the main research area is silver cobalt alumina ammonia octanol direct amination reaction rate.

The kinetics of the direct gas-phase amination reaction of 1-octanol with ammonia was studied over a Ag-Co/Al2O3 catalyst. An exhaustive exptl. dataset was acquired on a Flowrence unit using a full factorial exptl. design, covering the effect and interactions of the 1-octanol, ammonia and hydrogen partial pressures in the range 160-180 °C. An apparent zero order was obtained for both reactants (i.e. 1-octanol and NH3), addressing alc. dehydrogenation as the rate-determining step of the overall catalytic process. Most interestingly, a non-trivial pos. effect of the exogeneous H2 pressure was observed on the 1-octanol conversion, also favoring the formation of the secondary amine. To unveil the promoting role of H2 on the reaction rate, a comprehensive kinetic modeling study was carried out. Based on the observed exptl. trends, various kinetic models were proposed relying on an in situ catalytic deactivation-regeneration mechanism of the catalyst surface. Upon statistical discrimination, a robust kinetic model could be obtained, pointing out the adsorbed octylimine intermediate as the most plausible source of deactivation. The kinetic model afford an excellent description of the observed exptl. trends at both low and high 1-octanol conversion and provides a sound mechanistic explanation accounting for the unexpected role of H2 on alc. amination reactions.

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about Amination. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Product Details of C8H18O.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts