Burridge, Kevin M.’s team published research in Biomacromolecules in 2020-03-09 | CAS: 2212-32-0

Biomacromolecules published new progress about Liposomes. 2212-32-0 belongs to class alcohols-buliding-blocks, name is N2-(2-Hydroxyethyl)-N1,N1,N2-trimethyl-1,2-ethylenediamine, and the molecular formula is C7H18N2O, Category: alcohols-buliding-blocks.

Burridge, Kevin M. published the artcileSimple derivatization of RAFT-synthesized styrene-maleic anhydride copolymers for lipid disk formulations, Category: alcohols-buliding-blocks, the main research area is RAFT styrene maleic anhydride copolymer nucleophile derivative lipid disk.

Styrene-maleic acid copolymers have received significant attention because of their ability to interact with lipid bilayers and form styrene-maleic acid copolymer lipid nanoparticles (SMALPs). However, these SMALPs are limited in their chem. diversity, with only Ph and carboxylic acid functional groups, resulting in limitations because of sensitivity to low pH and high concentrations of divalent metals. To address this limitation, various nucleophiles were reacted with the anhydride unit of well-defined styrene-maleic anhydride copolymers in order to assess the potential for a new lipid disk nanoparticle-forming species. These styrene-maleic anhydride copolymer derivatives (SMADs) can form styrene-maleic acid derivative lipid nanoparticles (SMADLPs) when they interact with lipid mols. Polymers were synthesized, purified, characterized by Fourier-transform IR spectroscopy, gel permeation chromatog., and NMR and then used to make disk-like SMADLPs, whose sizes were measured by dynamic light scattering (DLS). The SMADs form lipid nanoparticles, observable by DLS and transmission electron microscopy, and were used to reconstitute a spin-labeled transmembrane protein, KCNE1. The polymer method reported here is facile and scalable and results in functional and robust polymers capable of forming lipid nanodisks that are stable against a wide pH range and 100 mM magnesium.

Biomacromolecules published new progress about Liposomes. 2212-32-0 belongs to class alcohols-buliding-blocks, name is N2-(2-Hydroxyethyl)-N1,N1,N2-trimethyl-1,2-ethylenediamine, and the molecular formula is C7H18N2O, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kelanne, Niina M.’s team published research in Food Chemistry in 2022-02-15 | CAS: 505-10-2

Food Chemistry published new progress about Beverages. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Formula: C4H10OS.

Kelanne, Niina M. published the artcileComparison of volatile compounds and sensory profiles of alcoholic black currant (Ribes nigrum) beverages produced with Saccharomyces, Torulaspora, and Metschnikowia yeasts, Formula: C4H10OS, the main research area is Ribes Saccharomyces Torulaspora Metschnikowia yeasts; Black currant; Metschnikowia fructicola; Metschnikowia pulcherrima; Saccharomyces; Torulaspora delbrueckii; odour; volatile composition.

Black currants (Ribes nigrum) were fermented with Saccharomyces and non-Saccharomyces yeasts without added sugar to yield low-ethanol-content beverages. The effects of yeasts on the volatile compounds and sensory characteristics were analyzed by HS-SPME-GC-MS, GC-O, and generic descriptive anal. Ninety-eight volatile compounds were identified from the black currant juice and fermented beverages. Significant increases in the contents of esters (131%), higher alcs. (391%), and fatty acids (not present in juice sample) compared to initial juice were observed depending on the yeasts used. GC-O anal. revealed the higher impact of esters on the sensory properties of Saccharomyces bayanus-fermented beverage compared to the Torulaspora delbrueckii-fermented beverage. In the sensory evaluation, non-Saccharomyces yeasts resulted in a higher black currant odor. However, all beverages were intensely sour, which can be a significant challenge in the development of alc. berry beverages.

Food Chemistry published new progress about Beverages. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Formula: C4H10OS.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Badiee, Hamid’s team published research in Environmental Pollution (Oxford, United Kingdom) in 2019-12-31 | CAS: 111-87-5

Environmental Pollution (Oxford, United Kingdom) published new progress about Beverages. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Synthetic Route of 111-87-5.

Badiee, Hamid published the artcileHollow fiber liquid-phase microextraction based on the use of a rotating extraction cell: A green approach for trace determination of rhodamine 6G and methylene blue dyes, Synthetic Route of 111-87-5, the main research area is rhodamine methylene blue rotating extraction cell HF LPME; Cosmetic products; Eco-scale; Environmental waters; Microextraction; Soft drink; Synthetic dyes.

In this work, a novel mode of hollow fiber liquid-phase microextraction (HF-LPME) technique namely rotating extraction cell solvent bar microextraction (REC-SBME) was introduced. The proposed method was applied for the preconcentration of methylene blue (MB) and rhodamine 6G (RG) in some real samples, including soft drink, lipstick, environmental water, and wastewater samples. In the extraction setup, two pieces of hollow fibers were fixed on a mech. support and immersed in a rotating extraction cell containing the sample solution during the extraction process. The rotation of the extraction cell by using an elec. motor led to an enhancement in the mass transfer of the dyes from the sample solution into the organic acceptor phase. In the developed procedure, the UV-Vis spectrophotometry and HPLC-UV/Vis were employed as detection methods for the anal. of the acceptor phase and the obtained results were compared. Optimization of the extraction factors affecting the method, including organic solvent type, sample solution pH, extraction time, rotational rate, the volume of sample and acceptor solutions, salt addition, and temperature was performed in order to obtain the best preconcentration factor. Linear dynamic range obtained by HPLC-UV/Vis and spectrophotometry was observed in the ranges of 2.5-1200 ng mL-1 for RG and 1.6-600 ng mL-1 for MB with R2 more than 0.9971. Also, relative standard deviation (RSD) values (n = 3) less than 3.8% were obtained. The good conformity of the obtained results makes UV-Vis spectrophotometric method an ideal tool for routine anal. of trace dyes in the complex matrixes after REC-SBME.

Environmental Pollution (Oxford, United Kingdom) published new progress about Beverages. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Synthetic Route of 111-87-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Wei’s team published research in Cell Reports in 2019-07-30 | CAS: 97-67-6

Cell Reports published new progress about Blindness. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Wang, Wei published the artcileMetabolic Deregulation of the Blood-Outer Retinal Barrier in Retinitis Pigmentosa, SDS of cas: 97-67-6, the main research area is retinitis pigmentosa blood outer retinal barrier metabolic deregulation; glucose transport; metabolism; photoreceptors; retinal pigment epithelium; retinitis pigmentosa; vision.

Retinitis pigmentosa (RP) initiates with diminished rod photoreceptor function, causing peripheral and night-time vision loss. However, subsequent loss of cone function and high-resolution daylight and color vision is most debilitating. Visual pigment-rich photoreceptor outer segments (OS) undergo phagocytosis by the retinal pigment epithelium (RPE), and the RPE also acts as a blood-outer retinal barrier transporting nutrients, including glucose, to photoreceptors. We provide evidence that contact between externalized phosphatidylserine (PS) on OS tips and apical RPE receptors activates Akt, linking phagocytosis with glucose transport to photoreceptors for new OS synthesis. As abundant mutant rod OS tips shorten in RP, Akt activation is lost, and onset of glucose metabolism in the RPE and diminished glucose transport combine to cause photoreceptor starvation and accompanying retinal metabolome changes. Subretinal injection of OS tip mimetics displaying PS restores Akt activation, glucose transport, and cone function in end-stage RP after rods are lost.

Cell Reports published new progress about Blindness. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Yaran’s team published research in Scientific Data in 2022-12-31 | CAS: 505-10-2

Scientific Data published new progress about Blueberry. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Computed Properties of 505-10-2.

Liu, Yaran published the artcileA high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines, Computed Properties of 505-10-2, the main research area is fruit wine blueberry gojiberry volatile compound odor HRMS library.

The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds However, the qual. determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qual. determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indexes (RI), CAS number, chem. structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines.

Scientific Data published new progress about Blueberry. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Computed Properties of 505-10-2.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mendes-Ferreira, Ana’s team published research in Food Science & Nutrition (Hoboken, NJ, United States) in 2019 | CAS: 505-10-2

Food Science & Nutrition (Hoboken, NJ, United States) published new progress about Blueberry. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Category: alcohols-buliding-blocks.

Mendes-Ferreira, Ana published the artcileProduction of blueberry wine and volatile characterization of young and bottle-aging beverages, Category: alcohols-buliding-blocks, the main research area is blueberry wine volatile compound; GC‐FID; GC‐MS; alcoholic fermentation; blueberry wine; bottle‐aging; volatile compounds.

The aim of this study was the production of blueberry wine and the characterization of the volatile compounds of fermented and aging in bottle products. Multivariate data anal. indicated similarity of volatile compounds released when fermentations were conducted at laboratory-scale and midscale, with the exception of one replicate creating a distinctive group characterized by low concentrations of acetaldehyde, methanol, 1-hexanol, and Et hexanoate, and the production of polyalcs. such as 2,3-butanediols. This experiment was the only one where no adjustments of YAN were performed. Some of the major volatile compounds (acetaldehyde, Et acetate, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethanol) were found above their perception thresholds. Esters and terpenic compounds were the groups of volatiles expressed the most in blueberry wines, followed by volatile fatty acids, alcs., and norisoprenoids (3-hydroxy-7,8-dihydro-β-ionone, 3-oxo-α-ionol, and 3-hydroxy-7,8-dihydro-β-ionol). The wines that experienced bottle-aging are characterized by high concentrations of Et esters, di-Et succinate, Et lactate, and di-Et malonate. The results contribute for deeper knowledge of the technol. procedure, anal. characteristics, and volatile compounds of blueberry wines, reinforcing the interest in this beverage and opening perspectives for further studies on the production of new blueberry-based products with differential characteristics that value its nutraceutical and functional properties.

Food Science & Nutrition (Hoboken, NJ, United States) published new progress about Blueberry. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Xu’s team published research in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) in 2019-09-30 | CAS: 97-67-6

Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) published new progress about C4 plants. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Zhang, Xu published the artcileC4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit, Synthetic Route of 97-67-6, the main research area is Triticum spike bract photosynthesis carbon metabolism water deficit; C4 photosynthetic enzymes; Carbon metabolism; Water deficit; Wheat spike bracts.

C4 photosynthetic enzymes are present in C3 plants and participate in non-photosynthetic metabolism Wheat spike bracts had a higher drought tolerance, photosynthesis and senesced later compared to the flag leaves under water deficit. This research was conducted to investigate the different response of primary carbon metabolism induced by C4 photosynthetic enzymes in wheat flag leaves and spike bracts including glumes and lemmas under water deficit. The activities of C4 photosynthetic enzymes and Ribulose bisphosphate carboxylase oxygenase (Rubisco), the expression of related genes and primary carbon metabolism contents were demonstrated in wheat flag leaves and spike bracts exposed to water deficit. Results showed that drought stress strongly inhibited wheat photosynthetic metabolism by decreasing Rubisco activity in flag leaves. The activities of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), phosphate dikinase (PPDK) and NADP- malic dehydrogenase (NADP-MDH) increased in wheat spike bracts under water deficit. Furthermore, the results indicated that drought stress induced changes in the contents of primary carbon metabolism including malate, oxaloacetic acid (OAA), citric, fumaric acid were organ-specific. In conclusion, the functions of C4 photosynthetic enzymes appear to be important for wheat spike bracts primary carbon metabolism and defense response under drought stress.

Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) published new progress about C4 plants. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pichon, Maeva M.’s team published research in Organic & Biomolecular Chemistry in 2019 | CAS: 22483-09-6

Organic & Biomolecular Chemistry published new progress about Canavalia. 22483-09-6 belongs to class alcohols-buliding-blocks, name is 2,2-Dimethoxyethanamine, and the molecular formula is C4H11NO2, Quality Control of 22483-09-6.

Pichon, Maeva M. published the artcileTight-binding inhibition of jack bean α-mannosidase by glycoimidazole clusters, Quality Control of 22483-09-6, the main research area is tight binding jack bean mannosidase glycoimidazole cluster inhibition.

The best multivalent effects observed in glycosidase inhibition have been achieved so far with jack bean α-mannosidase (JBα-man) using iminosugar clusters based on weakly binding mismatching active-site-directed inhibiting epitopes (inhitopes) in the D-gluco series. Here, we synthesize and evaluate as JBα-man inhibitors a series of mono- to 14-valent glycoimidazoles with inhitopes displaying inhibition values up to the range of hundreds of nMs to study the impact of inhitope affinity on the multivalent effect. The most potent inhibitor of the series, a 14-valent mannoimidazole derivative, inhibits JBα-man with a nanomolar Ki value (2 ± 0.5 nM) and binding enhancements observed are, at best, relatively small (up to 25-fold on a valency-corrected basis). The results of this study support the fact that JBα-man-inhitope affinity and the strength of the inhibitory multivalent effect evolve in the opposite direction. The major impact of the glycoimidazole-based inhitope is found on the binding scenario; most of the synthesized mannoimidazole clusters as well as a 14-valent glucoimidazole derivative prove to be tight binding inhibitors of JBα-man.

Organic & Biomolecular Chemistry published new progress about Canavalia. 22483-09-6 belongs to class alcohols-buliding-blocks, name is 2,2-Dimethoxyethanamine, and the molecular formula is C4H11NO2, Quality Control of 22483-09-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Zhengxin’s team published research in Langmuir in 2022-05-31 | CAS: 111-87-5

Langmuir published new progress about Catalysis. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Computed Properties of 111-87-5.

Li, Zhengxin published the artcileGrowth Rates of Hydrogen Microbubbles in Reacting Femtoliter Droplets, Computed Properties of 111-87-5, the main research area is growth rate hydrogen microbubble reaction femtoliter droplet.

Chem. reactions in small droplets are extensively explored to accelerate the discovery of new materials and increase the efficiency and specificity in catalytic biphasic conversion and high-throughput analytics. In this work, we investigate the local rate of the gas-evolution reaction within femtoliter droplets immobilized on a solid surface. The growth rate of hydrogen microbubbles (�00 nm in radius) produced from the reaction was measured online with high-resolution confocal microscopic images. The growth rate of bubbles was faster in smaller droplets and near the droplet rim in the same droplet. The results were consistent for both pure and binary reacting droplets and on substrates of different wettability. Our theor. anal. based on diffusion, chem. reaction, and bubble growth predicted that the concentration of the reactant depended on the droplet size and the bubble location inside the droplet, in good agreement with exptl. results. Our results reveal that the reaction rate may be spatially nonuniform in the reacting microdroplets. The findings may have implications for formulating the chem. properties and uses of these droplets.

Langmuir published new progress about Catalysis. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Computed Properties of 111-87-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Karanjit, Sangita’s team published research in Catalysis Science & Technology in 2022 | CAS: 107-54-0

Catalysis Science & Technology published new progress about Catalysts. 107-54-0 belongs to class alcohols-buliding-blocks, name is 3,5-Dimethylhex-1-yn-3-ol, and the molecular formula is C8H14O, Name: 3,5-Dimethylhex-1-yn-3-ol.

Karanjit, Sangita published the artcileA heterogeneous bifunctional silica-supported Ag2O/Im+Cl- catalyst for efficient CO2 conversion, Name: 3,5-Dimethylhex-1-yn-3-ol, the main research area is silica silver oxide imidazolium salt catalyst carbon dioxide conversion.

A silica-supported bifunctional heterogeneous catalytic system was developed based on imidazolium salt (Im+Cl-@SiO2) as an activator. The Im+Cl-@SiO2 activated both the Ag-catalyst and substrate for the carboxylative cyclization reaction of alcs. by the efficient utilization of CO2 under ambient conditions. The catalyst is quite stable and versatile and could be stored without the need of a protective atm. We also confirmed the reusability of the catalyst up to five cycles. Our catalytic system performed very well not only for the two-component reaction of propargyl alcs./amines with CO2, but also for the three-component reaction of propargyl alcs., CO2, and other alcs./amines with excellent yields of the corresponding carbonates and carbamates under mild reaction conditions. This system secures the advantages of both homogeneous and heterogeneous catalysis of ammonium salts with good activity, as well as easy isolation of the product and easy recovery of the catalyst.

Catalysis Science & Technology published new progress about Catalysts. 107-54-0 belongs to class alcohols-buliding-blocks, name is 3,5-Dimethylhex-1-yn-3-ol, and the molecular formula is C8H14O, Name: 3,5-Dimethylhex-1-yn-3-ol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts