Chemical Properties and Facts of (4-Methoxyphenyl)methanol

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD or concate me.

Formula: C8H10O2. Authors Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD in AMER CHEMICAL SOC published article about in [Wang, Zhao-Hui; Wang, He; Wang, Hua; Li, Lei; Zhou, Ming-Dong] Liaoning Shihua Univ, Sch Chem & Mat Sci, Fushun 113001, Peoples R China in 2021, Cited 63. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this work, ruthenium(II)-catalyzed C-C/C-N annulation of 2-arylquinazolinones with vinylene carbonate is reported to synthesize fused quinazolinones. This catalytic system tolerates a wide range of substrates with excellent functional-group compatibility. In this transformation, the vinylene carbonate acts as an ethynol surrogate without any external oxidant involved. Furthermore, preliminary mechanistic studies were conducted, and a plausible catalytic cycle was also proposed.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Absolute Best Science Experiment for (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or concate me.. Computed Properties of C8H10O2

Computed Properties of C8H10O2. In 2021 INORG CHEM published article about RUTHENIUM PINCER COMPLEX; POROUS ORGANIC POLYMER; SELECTIVE HYDROGENATION; HOMOGENEOUS HYDROGENATION; UNSATURATED ALDEHYDES; CYCLIC CARBONATES; ACTIVATED CARBON; SCALE SYNTHESIS; EFFICIENT; METHANOL in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, Seoul 06974, South Korea; [Padmanaban, Sudakar] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea; [Gunasekar, Gunniya Hariyanandam] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea in 2021, Cited 95. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h(-1)) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of alpha, beta-unsaturated carbonyl compounds.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or concate me.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of C8H10O2

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or concate me.

An article Strong metal-support interaction induced O-2 activation over Au/MNb2O6 (M= Zn2+, Ni2+ and Co2+) for efficient photocatalytic benzyl alcohol oxidative esterification WOS:000600017200006 published article about SELECTIVE AEROBIC OXIDATION; GOLD NANOPARTICLES; ALIPHATIC-ALCOHOLS; ATMOSPHERIC-PRESSURE; OXYGEN ACTIVATION; MOLECULAR-OXYGEN; METHYL-ESTERS; CATALYSTS; REDUCTION; OXIDE in [Wang, Jie; Gu, Xianmo; Pei, Linjuan; Kong, Peng; Zhang, Jin; Wang, Xiaoyu; Wang, Ruiyi; Zheng, Zhanfeng] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China; [Wang, Jie; Pei, Linjuan; Zhang, Jin; Wang, Xiaoyu; Zheng, Zhanfeng] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China; [Waclawik, Eric R.] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia in 2021, Cited 61. Category: alcohols-buliding-blocks. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A series of metal niobates (MNb2O6, M = Zn2+, Ni2+ and Co2+) were prepared from H-niobate precursor under hydrothermal conditions, in which amino groups of L-lysine play an important role. Au nanoparticles were then supported on these niobates by NaBH4 reduction method. More importantly, the strong interaction between Au nanoparticles and ZnNb2O6 generates negatively charged Au which can activate molecular oxygen to form the exclusive high-active peroxide (NbOOAu) species on Au/ZnNb2O6 surface under visible light irradiation, observed in situ by diffuse reflectance infrared Fourier transform spectra (DRIFTS). The optimal NbOOAu species produced on the surface of Au/ZnNb2O6 can remove the H atom of the methylene group (-CH2-) of benzyl alcohol, leading to high photocatalytic activity of Au/ZnNb2O6 compared with Au/NiNb2O6 and Au/CoNb2O6. This modulation of interaction of Au and niobates for the activation of molecular oxygen provides a new prospect for highly selective photocatalytic oxidation reactions.

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What Kind of Chemistry Facts Are We Going to Learn About C8H10O2

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.

Quality Control of (4-Methoxyphenyl)methanol. Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S in [Inatomi, Saki; Takayanagi, Yuta; Watanabe, Kento; Toita, Akinori; Yamakoshi, Hiroyuki; Nakamura, Seiichi] Nagoya City Univ, Grad Sch Pharmaceut Sci, Mizuho Ku, 3-1 Tanabe Dori, Nagoya, Aichi 4678603, Japan published Stereoselective 1,4-Addition of Primary Alcohols to gamma-Alkoxy-alpha,beta-unsaturated Esters in 2021, Cited 26. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

The scope and limitations of the diastereoselective 1,4-addition reaction of primary alcohols to gamma-alkoxy-alpha,beta-unsaturated esters were investigated. We found that a variety of sodium alkoxides, generated from the corresponding primary alcohols with NaH, underwent 1,4-addition reactions with (E)-enoates in CH(2)Cl(2)at -23 degrees C to give beta-alkoxy esters in modest yields with good to excellentsyn-selectivity, whereas stereoselectivity was not observed with the use of glycerol derivatives as nucleophiles. Cyclic acetal protection was found to play a pivotal role for the reaction to proceed.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

A new application about(4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kobayashi, M; Yamaguchi, H; Suzuki, T; Obora, Y or concate me.. Recommanded Product: 105-13-5

An article Cross beta-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles WOS:000627441700007 published article about N,N-DIMETHYLFORMAMIDE-STABILIZED PALLADIUM NANOCLUSTERS; ALPHA-ALKYLATION; BORROWING HYDROGEN; GUERBET REACTION; N-BUTANOL; METHYLATION; KETONES; METHANOL; DIMETHYLFORMAMIDE; ALPHA,OMEGA-DIOLS in [Kobayashi, Masaki; Yamaguchi, Hiroki; Obora, Yasushi] Kansai Univ, Fac Chem Mat & Bioengn, Dept Chem & Mat Engn, Suita, Osaka 5648680, Japan; [Suzuki, Takeyuki] Osaka Univ, Comprehens Anal Ctr, Inst Sci & Ind Res ISIR, 8-1 Mihogaoka, Ibaraki, Osaka 5670057, Japan in 2021, Cited 64. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

A simple method for the cross beta-alkylation of linear alcohols with benzyl alcohols in the presence of DMF-stabilized iridium nanoparticles was developed. The nanoparticles were prepared in one-step and thoroughly characterized. Furthermore, the optimum reaction conditions have a wide substrate scope and excellent product selectivity.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kobayashi, M; Yamaguchi, H; Suzuki, T; Obora, Y or concate me.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, K; Chen, H; Dai, XY; Huang, XP; Feng, ZQ or concate me.

An article Palladium-catalyzed one-pot synthesis of 2-substituted quinazolin-4(3H)-ones from o-nitrobenzamide and alcohols WOS:000640769800011 published article about CASCADE SYNTHESIS; QUINAZOLINONES; SYSTEM; 4(3H)-QUINAZOLINONES; 2-NITROBENZAMIDES; AMINOBENZAMIDES; CYCLIZATION; CHEMISTRY; EFFICIENT; STRATEGY in [Wang, Ke; Chen, Hao; Dai, Xinyan; Huang, Xupeng; Feng, Zhiqiang] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Act Subst Discovery & Drugabil Ev, 1 Xiannongtan St, Beijing 100050, Peoples R China in 2021, Cited 41. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields. The cascade reaction including alcohol oxidation, nitro reduction, condensation, and dehydrogenation occurs without any added reducing or oxidizing agent.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, K; Chen, H; Dai, XY; Huang, XP; Feng, ZQ or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA or concate me.. Product Details of 105-13-5

Product Details of 105-13-5. Authors Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA in WILEY-V C H VERLAG GMBH published article about in [Ruiz-Castaneda, Margarita; Santos, Lucia; Manzano, Blanca R.; Jalon, Felix A.] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim IRICA, Avda CJ Cela 10, Ciudad Real 13071, Spain; [Espino, Gustavo] Univ Burgos, Fac Ciencias, Dept Quim, Plaza Misael Banuelos S-N, Burgos 09001, Spain in 2021, Cited 107. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Deuterium labeling is an interesting process that leads to compounds of use in different fields. We describe the transfer hydrogenation of aldehydes and the selective C-1 deuteration of the obtained alcohols in D2O, as the only deuterium source. Different aromatic, alkylic and alpha,beta-unsaturated aldehydes were reduced in the presence of [RuCl(p-cymene)(dmbpy)]BF4, (dmbpy=4,4 ‘-dimethyl-2,2 ‘-bipyridine) as the pre-catalyst and HCO2Na/HCO2H as the hydrogen source. Moreover, furfural and glucose, were selectively reduced to the valuable alcohols, furfuryl alcohol and sorbitol. The processes were carried out in neat water or in a biphasic water/toluene system. The biphasic system allowed easy recycling, higher yields, and higher selective D incorporation (using D2O/toluene). The deuteration took place due to an efficient effective M-H/D+ exchange from D2O that allows the inversion of polarity of D+ (umpolung). DFT calculations that explain the catalytic behavior in water are also included.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA or concate me.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Properties and Exciting Facts About (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Pandey, B; Xu, S; Ding, KY or concate me.. Name: (4-Methoxyphenyl)methanol

An article Switchable beta-alkylation of Secondary Alcohols with Primary Alcohols by a Well-Defined Cobalt Catalyst WOS:000651063700005 published article about ALPHA-ALKYLATION; N-ALKYLATION; EFFICIENT CATALYSTS; BORROWING HYDROGEN; PINCER COMPLEXES; AROMATIC-AMINES; MANGANESE; KETONES; METHYLATION; IMINES in [Pandey, Bedraj; Xu, Shi; Ding, Keying] Middle Tennessee State Univ, Dept Chem, Murfreesboro, TN 37132 USA; [Ding, Keying] Middle Tennessee State Univ, Mol Biosci Program, Murfreesboro, TN 37132 USA in 2021, Cited 72. Name: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

beta-alkylation of secondary alcohols with primary alcohols to selectively generate alcohols by a well-defined Co catalyst is presented. Remarkably, a low catalyst loading of 0.7 mol % can be employed for the reaction. More significantly, this study represents the first Co-catalyzed switchable alcohol/ketone synthesis by simply manipulating the reaction parameters. In addition, the transformation is environmentally friendly, with water as the only byproduct.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Pandey, B; Xu, S; Ding, KY or concate me.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of 105-13-5

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, PG; Bagherzade, G; Eshghi, H or concate me.

An article Introduction of a trinuclear manganese(iii) catalyst on the surface of magnetic cellulose as an eco-benign, efficient and reusable novel heterogeneous catalyst for the multi-component synthesis of new derivatives of xanthene WOS:000612191100006 published article about ONE-POT SYNTHESIS; RECOVERABLE NANO-CATALYST; FACILE SYNTHESIS; IONIC LIQUID; RECYCLABLE CATALYST; NATURAL PHOSPHATE; HIGHLY EFFICIENT; GREEN CHEMISTRY; SULFONIC-ACID; NANOPARTICLES in [Kargar, Pouya Ghamari; Bagherzade, Ghodsieh] Univ Birjand, Fac Sci, Dept Chem, Birjand 97175615, Iran; [Eshghi, Hossein] Ferdowsi Univ Mashhad, Fac Sci, Dept Chem, Mashhad, Razavi Khorasan, Iran in 2021, Cited 77. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. SDS of cas: 105-13-5

In this work, the new trinuclear manganese catalyst defined as Fe3O4@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis. There have been reports of the use of magnetic catalysts for the synthesis of xanthine derivatives. The critical potential interest in the present method include short reaction time, high yields, recyclability of the catalyst, easy workup, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. Also, the synthesized catalyst was used as a recyclable trinuclear catalyst in alcohol oxidation reactions at 40 degrees C. The magnetic catalyst activity of Fe3O4@NFC@NNSM-Mn(iii) could be attributed to the synergistic effects of the catalyst Fe3O4@NFC@NNS-Mn(iii) with melamine. Employing a sustainable and safe low temperature, using an eco-friendly solvent, no need to use any additive, and long-term stability and magnetic recyclability of the catalyst for at least six successive runs are the advantages of the current protocol towards green chemistry. This protocol is a benign, environmentally friendly method for heterocycle synthesis.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, PG; Bagherzade, G; Eshghi, H or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of 105-13-5

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mirbagheri, R; Elhamifar, D; Hajati, S or concate me.

Recently I am researching about N-PROPYLAMMONIUM PERRUTHENATE; ALCOHOLS, Saw an article supported by the Yasouj University; Iran National Science Foundation (INSF)Iran National Science Foundation (INSF). Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Mirbagheri, R; Elhamifar, D; Hajati, S. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Application In Synthesis of (4-Methoxyphenyl)methanol

A novel method was used to prepare a magnetic phenylene-based periodic mesoporous organosilica nanocomposite with yolk-shell structure (Fe3O4@YSPMO). The Fe3O4@YSPMO nanomaterial was prepared by using easily accessible pluronic-P123 and cetyltrimethylammonium bromide (CTAB) surfactants under basic conditions. This material was employed for effective immobilization of potassium perruthenate to prepare an Fe3O4@YSPMO@Ru nanocatalyst for the aerobic oxidation of alcohols. The physiochemical properties of the designed Fe3O4@YSPMO@Ru nanocomposite were studied using PXRD, FT-IR, TGA, SEM, TEM, ICP, VSM and XPS analyses. Fe3O4@YSPMO@Ru was effectively employed as a highly recoverable nanocatalyst in the selective aerobic oxidation of alcohols.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mirbagheri, R; Elhamifar, D; Hajati, S or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts