Why do aromatic interactions matter of compound:C8H10O2

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Cavallo, M; Arnodo, D; Mannu, A; Blangetti, M; Prandi, C; Baratta, W; Baldino, S or concate me.

SDS of cas: 105-13-5. Authors Cavallo, M; Arnodo, D; Mannu, A; Blangetti, M; Prandi, C; Baratta, W; Baldino, S in PERGAMON-ELSEVIER SCIENCE LTD published article about in [Cavallo, Marzia; Arnodo, Davide; Mannu, Alberto; Blangetti, Marco; Prandi, Cristina; Baldino, Salvatore] Dipartimento Chim, Via P Giuria 7, I-10125 Turin, Italy; [Baratta, Walter] Univ Udine, Dipartimento DI4A, Via Cotonificio 108, I-33100 Udine, Italy in 2021, Cited 52. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The employment of easily affordable ruthenium(II)-complexes as pre-catalysts in the transfer hydrogenation of carbonyl compounds in deep eutectic media is described for the first time. The eutectic mixture tetrabutylammonium bromide/formic acid = 1/1 (TBABr/HCOOH = 1/1) acts both as reaction medium and hydrogen source. The addition of a base is required for the process to occur. An extensive optimization of the reaction conditions has been carried out, in terms of catalyst loading, type of complexes, H-2-donors, reaction temperature and time. The combination of the dimeric complex [RuCl(p-cymene)-mu-Cl](2) (0.01-0.05 eq.) and the ligand dppf (1,10-ferrocenediyl-bis(diphenylphosphine)ferrocene) in 1/1 molar ratio has proven to be a suitable catalytic system for the reduction of several and diverse aldehydes and ketones to their corresponding alcohols under mild conditions (40-60 degrees C) in air, showing from moderate to excellent tolerability towards different functional groups (halogen, cyano, nitro, phenol). The reduction of imine compounds to their corresponding amine derivatives was also studied. In addition, the comparison between the results obtained in TBABr/HCOOH and in organic solvents suggests a non-innocent effect of the DES medium during the process. (C) 2021 Elsevier Ltd. All rights reserved.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Cavallo, M; Arnodo, D; Mannu, A; Blangetti, M; Prandi, C; Baratta, W; Baldino, S or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :105-13-5

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C or concate me.

Authors Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C in ROYAL SOC CHEMISTRY published article about in [Zhuang, Xiaohui; Sun, Bin; Su, WeiKe; Jin, Can] Zhejiang Univ Technol, Collaborat Innovat Ctr Yangtze River Delta Reg Gr, Hangzhou, Peoples R China; [Shi, Xiayue; Zhu, Rui; Su, WeiKe; Jin, Can] Zhejiang Univ Technol, Coll Pharmaceut Sci, Hangzhou, Peoples R China in 2021, Cited 58. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed. This strategy showed excellent regioselectivity and simple operation to synthesize 4-substituted 3,3-difluoro-gamma-lactams with a broad substrate scope. Moreover, mechanistic studies revealed that this transformation proceeded through a cascade radical-type cyclization and hydrogen atom transfer process with PMDETA as a hydrogen-atom donor.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Some scientific research about C8H10O2

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or concate me.

Computed Properties of C8H10O2. In 2021 J MOL STRUCT published article about NICKEL FERRITE NANOPARTICLES; AEROBIC OXIDATION; MAGNETIC NANOPARTICLES; MECHANISM; ALDEHYDES; EFFICIENT; LIGAND in [Mehrjoyan, Forouzan] Islamic Azad Univ, Dept Chem, Ahvaz Branch, Ahvaz, Iran; [Afshari, Mozhgan] Islamic Azad Univ, Dept Chem, Shoushtar Branch, Shoushtar 6451741117, Iran in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A new magnetically recoverable catalyst consisting of phenanthroline Cu(II) complex supported on nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized by Fourier transform in-frared spectroscopy, X-ray diffraction, transmission and scanning electron microscopes, thermogravimetry, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma. Supported copper complex used for solvent free oxidation of 1-phenyl ethanol as a model. Influence of the reaction parameters (kind of oxidant, amount of the catalyst, reaction time, solvent and reaction temperature) were studied. Because of the immobilized complex has been shown to be an efficient het-erogeneous catalyst for the selective oxidation of 1-phenyl ethanol to acetophenone (94% yield) by hydro-gen peroxide so this green approach extended to other benzylic alcohols. The catalyst had been reused 10 times with no significant loss of catalytic activity. SEM, EDX, XRD, and ICP analysis of reused catalyst indicated that the catalyst was stable after the reaction. (c) 2021 Published by Elsevier B.V.

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Discovery of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V or concate me.. Computed Properties of C8H10O2

Recently I am researching about ORGANIC-CHEMISTRY; AROMATIC ALCOHOLS; AQUEOUS GLUCOSE; BENZOIC-ACID; WATER; HYDROCARBONS; DEGRADATION, Saw an article supported by the Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [111T489]. Published in ELSEVIER SCI LTD in OXFORD ,Authors: Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Computed Properties of C8H10O2

The influence of pH on the photocatalytic partial oxidation of 4-methoxybenzyl alcohol (MBA) and vanillyl alcohol (VA) to their corresponding aldehydes in aqueous suspension under UVA irradiation was investigated by using poorly crystalline home-prepared and crystalline commercial TiO2 (BDH, Merck and Degussa P25) photocatalysts. The results clearly show as tuning pH can strongly impart selectivity and activity to photocatalytic processes which are often quite unselective in aqueous suspensions. It was found that pH effect on reaction rate and product selectivity strongly depended on TiO2 crystallinity and substrate type. In the case of MBA oxidation, photoreactivity and selectivity were very high at low pH values for all of TiO2 catalysts, and the crystalline samples showed to be more active than the poorly crystalline ones. At pH= 1 the photoactivity of Degussa P25 was the highest one, and 88% selectivity at 50% conversion was determined. At acidic pH values, selectivity and activity were higher in the presence of HCl than H2SO4 or H3PO4. For VA oxidation, high selectivity values were obtained at high pH’s for all of the samples, and the crystalline samples showed higher activity at the alkaline pH values with respect to that observed at the acidic ones. Experiments starting from the obtained products, that are p-anisaldehyde and vanillin, showed that the selectivity depends on the resistance of those compounds to be subjected to further oxidation under the experimental conditions used.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V or concate me.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome Chemistry Experiments For (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS or concate me.

Application In Synthesis of (4-Methoxyphenyl)methanol. Authors Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS in WILEY-V C H VERLAG GMBH published article about in [Luo, Nianhua; Zhong, Yuhong; Wen, Huiling; Shui, Hongling; Luo, Renshi] Gannan Med Univ, Sch Pharmaceut Sci, Ganzhou 341000, Jiangxi, Peoples R China in 2021, Cited 94. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of alpha-alkylated ketones in high yield (86 %-95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of alpha-alkylated ketones.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Some scientific research about 105-13-5

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or concate me.

In 2021 J MOL STRUCT published article about NICKEL FERRITE NANOPARTICLES; AEROBIC OXIDATION; MAGNETIC NANOPARTICLES; MECHANISM; ALDEHYDES; EFFICIENT; LIGAND in [Mehrjoyan, Forouzan] Islamic Azad Univ, Dept Chem, Ahvaz Branch, Ahvaz, Iran; [Afshari, Mozhgan] Islamic Azad Univ, Dept Chem, Shoushtar Branch, Shoushtar 6451741117, Iran in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Category: alcohols-buliding-blocks

A new magnetically recoverable catalyst consisting of phenanthroline Cu(II) complex supported on nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized by Fourier transform in-frared spectroscopy, X-ray diffraction, transmission and scanning electron microscopes, thermogravimetry, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma. Supported copper complex used for solvent free oxidation of 1-phenyl ethanol as a model. Influence of the reaction parameters (kind of oxidant, amount of the catalyst, reaction time, solvent and reaction temperature) were studied. Because of the immobilized complex has been shown to be an efficient het-erogeneous catalyst for the selective oxidation of 1-phenyl ethanol to acetophenone (94% yield) by hydro-gen peroxide so this green approach extended to other benzylic alcohols. The catalyst had been reused 10 times with no significant loss of catalytic activity. SEM, EDX, XRD, and ICP analysis of reused catalyst indicated that the catalyst was stable after the reaction. (c) 2021 Published by Elsevier B.V.

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of 105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA or concate me.. HPLC of Formula: C8H10O2

HPLC of Formula: C8H10O2. Authors Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA in WILEY-V C H VERLAG GMBH published article about in [Ruiz-Castaneda, Margarita; Santos, Lucia; Manzano, Blanca R.; Jalon, Felix A.] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim IRICA, Avda CJ Cela 10, Ciudad Real 13071, Spain; [Espino, Gustavo] Univ Burgos, Fac Ciencias, Dept Quim, Plaza Misael Banuelos S-N, Burgos 09001, Spain in 2021, Cited 107. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Deuterium labeling is an interesting process that leads to compounds of use in different fields. We describe the transfer hydrogenation of aldehydes and the selective C-1 deuteration of the obtained alcohols in D2O, as the only deuterium source. Different aromatic, alkylic and alpha,beta-unsaturated aldehydes were reduced in the presence of [RuCl(p-cymene)(dmbpy)]BF4, (dmbpy=4,4 ‘-dimethyl-2,2 ‘-bipyridine) as the pre-catalyst and HCO2Na/HCO2H as the hydrogen source. Moreover, furfural and glucose, were selectively reduced to the valuable alcohols, furfuryl alcohol and sorbitol. The processes were carried out in neat water or in a biphasic water/toluene system. The biphasic system allowed easy recycling, higher yields, and higher selective D incorporation (using D2O/toluene). The deuteration took place due to an efficient effective M-H/D+ exchange from D2O that allows the inversion of polarity of D+ (umpolung). DFT calculations that explain the catalytic behavior in water are also included.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA or concate me.. HPLC of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of 105-13-5

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yao, HY; Wang, YS; Razi, MK or concate me.

Computed Properties of C8H10O2. Authors Yao, HY; Wang, YS; Razi, MK in ROYAL SOC CHEMISTRY published article about in [Yao, Hongyan] Hebi Polytech, Deans Off, Hebi 458030, Peoples R China; [Wang, Yongsheng] Henan Polytech Univ, Sch Phys Sci Educ, Jiaozuo 454003, Henan, Peoples R China; [Razi, Maryam Kargar] Islamic Azad Univ, North Branch Tehran, Fac Chem, Tehran, Iran in 2021, Cited 82. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a magnetic asymmetric Salamo-based Zn complex (H2L = salen type di-Schiff bases)-supported on the surface of modified Fe3O4 (Fe3O4@H2L-Zn) as a new catalyst was designed and characterized via numerous analytical techniques such as FT-IR spectroscopy, XRD, EDS, ICP-AES, SEM, TEM, TGA and VSM. An efficient and sustainable synthetic protocol has been presented for the synthesis of silyl ether substructures via the silyl protection of alcohols under mild conditions. The synthetic protocol involves a two-component solvent-free reaction between various hydroxyl-bearing substrates and hexamethyldisilazane (HMDS) as an inexpensive silylating agent using Fe3O4@H2L-Zn MNPs as a magnetically separable, recyclable and reusable heterogeneous catalyst. Fe3O4@H2L-Zn MNPs were also applied for the removal of silyl protecting groups from hydroxyl functions using water in CH2Cl2 under green conditions. The catalyst demonstrated good to excellent catalytic yield efficiency for both the reactions compared to the commercial metal-based catalysts under green conditions for a wide range of substrates.

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yao, HY; Wang, YS; Razi, MK or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New learning discoveries about (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S or concate me.. Product Details of 105-13-5

Product Details of 105-13-5. Authors Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S in AMER CHEMICAL SOC published article about in [Duong, Uyen; Ansari, Tharique N.; Parmar, Saurav; Sharma, Sudripet; Kozlowski, Pawel M.; Handa, Sachin] Univ Louisville, Dept Chem, Louisville, KY 40292 USA; [Jasinski, Jacek B.] Univ Louisville, Mat Characterizat, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA; [Plummer, Scott] Novartis Inst Biomed Res, Cambridge, MA 02139 USA; [Gallou, Fabrice] Novartis Pharma AG, CH-4056 Basel, Switzerland in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Upon visible-light irradiation, the heterogeneous polymer of PDI-Cu(I)-PDI (PDI = perylene diimide) generates charge transfer states that are subsequently quenched by molecular oxygen for their participation in redox activity. This insoluble polymeric Cu(I) is catalytically active for the oxidation of benzylic alcohols to corresponding aldehydes when suspended in dynamic micelles of PS-750-M. A broad substrate scope, excellent selectivity, and no over-oxidation reveal the catalyst robustness. The catalytic activity, control experiments, and time-dependent DFT calculations show the charge transfer states. The polymeric catalyst is entirely recyclable, as evidenced by the recycle studies using Scott’s recyclability test. The morphology, structure, copper’s oxidation state, and the catalyst’s thermal stability are determined by SEM, XPS, and TGA analysis.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S or concate me.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

More research is needed about (4-Methoxyphenyl)methanol

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, DF; Wang, JG; Xu, FX; Zhang, NC; Men, Y or concate me.

An article Mesoporous (001)-TiO2 nanocrystals with tailored Ti3+ and surface oxygen vacancies for boosting photocatalytic selective conversion of aromatic alcohols WOS:000644065100024 published article about EXPOSED 001 FACETS; SOOT OXIDATION ACTIVITY; VISIBLE PHOTOCATALYST; DOPED TIO2; PERCENTAGE; NANOCOMPOSITES; PERFORMANCE; NANOSHEETS; CATALYSTS; CRYSTALS in [Li, Dianfeng; Wang, Jinguo; Xu, Fengxia; Zhang, Nianchen; Men, Yong] Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Formula: C8H10O2

Selective conversion of aromatic alcohols to value-added chemicals is becoming an emerging research hotspot in heterogeneous photocatalysis, but its critical challenge is how to construct highly efficient photocatalysts. Herein, mesoporous (001)-TiO2 nanocrystals with tailored Ti3+ and surface oxygen vacancies have been fabricated by a facile hydrothermal route, showing remarkably boosted photoactivity for selective conversion of aromatic alcohols to carbonyl compounds in water medium under visible-light irradiation. Results attest that the remarkably boosted photoactivity was mainly correlated with the strong synergetic effect of exposed (001) facets, Ti3+ self-doping, and surface oxygen vacancies, leading to the enhanced reactant (aromatic alcohols and O-2) activation via the high surface energy of (001) facets, the improved visible-light absorbance via the intrinsic band gap narrowing, and the escalated photoelectron-hole separation efficiency via Ti3+ and surface oxygen vacancies acting as electron sinks. Meanwhile, a plausible photocatalytic mechanism for selective conversion of aromatic alcohols to carbonyl compounds has been elucidated in detail based on active species identified by capture experiments. It is hoped that this work can deliver some new insights into the rational design of highly efficient photocatalysts applied in future green organic selective transformation reactions.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, DF; Wang, JG; Xu, FX; Zhang, NC; Men, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts