Sharapov, Ainur D. team published research in Green Chemistry in 2022 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., SDS of cas: 533-73-3

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. SDS of cas: 533-73-3

Sharapov, Ainur D.;Fatykhov, Ramil F.;Khalymbadzha, Igor A.;Sharutin, Vladimir V.;Santra, Sougata;Zyryanov, Grigory V.;Chupakhin, Oleg N.;Ranu, Brindaban C. research published 《 Mechanochemical synthesis of coumarins via Pechmann condensation under solvent-free conditions: an easy access to coumarins and annulated pyrano[2,3-f] and [3,2-f]indoles》, the research content is summarized as follows. A green protocol has been developed for the synthesis of simple coumarins, e.g., I linear pyrano[2,3-f] and [3,2-f]indoles by the reaction of phenol derivatives ROH (R = 3,5-(OH)2C6H3, 4-Br-3-OHC6H3, 3-OMeC6H4) with β-ketoesters, e.g., cyclohexanecarboxylic acid, 2-oxo-, Et ester under ball milling at ambient temperature in the presence of methanesulfonic acid as a mild acid catalyst. The significant advantages of this procedure are high yields, scalability, no use of hazardous acids or solvents, shorter reaction time, ambient temperature, low cost, and straightforward purification without column chromatog. This procedure is associated with high EcoScale metrics and a low E-factor. In contrast to traditional Pechmann condensation procedures, the mechanochem. protocol leads to the synthesis of pyranoindoles with excellent regioselectivity and high yields.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., SDS of cas: 533-73-3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shareef, T. H. Mohamed Ahadu team published research in International Journal of Pharmaceutical Investigation in 2022 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Safety of Benzene-1,2,4-triol

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Safety of Benzene-1,2,4-triol

Shareef, T. H. Mohamed Ahadu;Masood, Mohamed Divan research published 《 Phytochemical and molecular docking studies on indigenous herbs Glycyrrhiza glabra, Terminalia chebula and Hamdard joshanda》, the research content is summarized as follows. Glycyrrhiza glabra, Terminalia chebula and Hamdard joshanda is used as a traditional home medicine in developing countries that is easily available for a lesser cost with no side effects. These medicine decoctions made record in pandemic that have found efficacious in Covid-19 patients with RTI in addition to Dengue and Malarial fever. Our study aimed to explore the qual. as well as quant. in potential traditional medicines such as Glycyrrhiza glabra, Terminalia chebula and Hamdard joshanda through phytochem. and GC-MS anal. technique were conducted for finding all the potential chem. constituents in these herbal medicines. Docking studies were carried out between Glycyrrhiza glabra, Terminalia chebula and Hamdard joshanda and receptors of the crystal structure of SARS coronavirus, Lung Cancer and Mycobacterium tuberculosis proteins. The presence of various phytochems., total phenolic and flavonoid content were determined in Glycyrrhiza glabra, Terminalia chebula and Hamdard joshanda by standard procedure. Docking study was investigated using the crystal structure of SARS coronavirus protease for the modeling (PDB ID: 3SN8), Lung Cancer Protein for the modeling (PDB ID: 6JZ0) and Mycobacterium tuberculosis protein for the modeling (PDB ID: 4FDO). GC-MS chromatogram showed 26, 18 and 23 peaks that revealed 26, 18 and 23 phytoconstituents present in Glycyrrhiza glabra, Terminalia chebula, and Hamdard joshanda resp. Total phenolic and flavonoid contents found in Glycyrrhiza glabra, Terminalia chebula, and Hamdard joshanda were 1.95, 1.88, 1.55, and 0.66, 0.56, 0.49 mg/mL, resp. Docking studies were exhibited that moderate to higher efficacy against Covid-19, Tuberculosis and Lung cancer. However, several more in vivo and in vitro research needs to investigate their mol. system or any other significance of unused bioactive substance in these traditional medicines used for human relapse. These potential traditional medicines have been confirmed to be safe for human consumption and the present study would also suggest its direct consumption as well as for attaining the proven benefits.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Safety of Benzene-1,2,4-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Romero, Romina team published research in Journal of Photochemistry and Photobiology, A: Chemistry in 2022 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., HPLC of Formula: 533-73-3

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. HPLC of Formula: 533-73-3

Romero, Romina;Marquez, Katherine;Benitez, Francisca J.;Toro-Labbe, Alejandro;Cornejo-Ponce, Lorena;Melin, Victoria;Contreras, David research published 《 Chemiluminescence emission in Fenton reaction driven by 1,2-dihydroxybenzenes: Mechanistic approaches using 4-substituted ligands》, the research content is summarized as follows. Fenton (F) and Fenton-like (FL) reactions can be amplified by dihydroxybenzenes (DHBs). These compounds chelate and reduce Fe(III), promoting the hydroxyl radical production (·OH). The products or intermediaries of F and FL reactions driven by DHBs can produce chemiluminescence (CL) with different profiles, depending on the type of DHB involved. In this work, CL produced by F and FL systems driven by different -para substituted DHBs was measured and compared with the reactivity of each system and with the structural parameters of each DHB. CL emission was not related to the reactivity of each studied system but was favored by DHBs substituents with -NHR and -OH groups combined in the branching (NHR-DHBs). PLS multivariate regression models were constructed using computational parameters for each DHB, quinone (Q) and semiquinone (SQ·) to find the influence of structural and electronic parameters over CL emission. Anal. showed that in NHR-DHBs, the higher CL exhibited could be explained by cycling ability of these compounds In DHBs with an electron-donor group (EDG) the CL emission would depend only on the stability of the intermediary species generated by DHB and ·OH reaction. While DHBs with electron-withdrawing groups (EWG) showed that CL will increase depending on the stability of the intermediaries by resonance, and by the acidity of the hydroxyl protons of the ring. PLS-SQ· showed that spin densities were strongly correlated with an increase in CL emission. DHBs with substituents that favor the delocalization of charge in the SQ· to the ramification would enhance CL emission. Meanwhile, when the delocalization is promoted over the DHB-ring, these systems become more reactive, and the CL emission is disadvantaged by quinone formation.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., HPLC of Formula: 533-73-3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Samarghandi, Mohammad Reza team published research in Chemosphere in 2021 | 533-73-3

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 533-73-3

Samarghandi, Mohammad Reza;Dargahi, Abdollah;Rahmani, Alireza;Shabanloo, Amir;Ansari, Amin;Nematollahi, Davood research published 《 Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2-Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: Process optimization and degradation pathway》, the research content is summarized as follows. A three-dimensional electrochem. reactor with Ti/SnO2-Sb/β-PbO2 anode and granular activated carbon (3DER-GAC) particle electrodes were used for degradation of 2,4-dichlorophenol (2,4-DCP). Process modeling and optimization were performed using an orthogonal central composite design (OCCD) and genetic algorithm (GA), resp. Ti/SnO2-Sb/β-PbO2 anode was prepared by electrochem. deposition method and then its properties were studied by FESEM, EDX, XRD, Linear sweep voltammetry and accelerated lifetime test techniques. The results showed that lead oxide was precipitated as highly compact pyramidal clusters in the form of β-PbO2 on the electrode surface. In addition, the prepared anode had high stability (170 h) and oxygen evolution potential (2.32 V). A robust quadratic model (p-value < 0.0001 and R2 > 0.99) was developed to predict the 2,4-DCP removal efficiency in the 3DER-GAC system. Under optimal conditions (pH = 4.98, Na2SO4 concentration = 0.07 M, c.d. = 35 mA cm-2, GAC amount = 25 g and reaction time = 50 min), the removal efficiency of 2,4-DCP in the 3DER-GAC system and the sep. electrochem. degradation process (without GAC particle electrode) were 99.8 and 71%, resp. At a reaction time of 80 min, the TOC removal efficiencies in the 3DER-GAC and the sep. electrochem. degradation system were 100 and 57.5%, resp. Accordingly, the energy consumed in these two systems was calculated to be 0.81 and 1.57 kWh g-1 TOC, resp. Based on the results of LC-MS anal., possible degradation pathways of 2,4-DCP were proposed. Trimerization and ring opening reactions were the two dominant mechanisms in 2,4-DCP degradation

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qamar, Muhammad team published research in Nutrients in 2021 | 533-73-3

Computed Properties of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 533-73-3

Qamar, Muhammad;Akhtar, Saeed;Ismail, Tariq;Wahid, Muqeet;Barnard, Ross T.;Esatbeyoglu, Tuba;Ziora, Zyta M. research published 《 The Chemical Composition and Health-Promoting Effects of the Grewia Species-A Systematic Review and Meta-Analysis》, the research content is summarized as follows. Globally grown and organoleptically appreciated Grewia species are known as sources of bioactive compounds that avert the risk of communicable and non-communicable diseases. Therefore, in recent years, the genus Grewia has attracted increasing scientific attention. This is the first systematic review which focusses primarily on the nutritional composition, phytochem. profile, pharmacol. properties, and disease preventative role of Grewia species. The literature published from 1975 to 2021 was searched to retrieve relevant articles from databases such as Google Scholar, Scopus, PubMed, and Web of Science. Two independent reviewers carried out the screening, selection of articles, and data extraction Of 815 references, 56 met our inclusion criteria. G. asiatica and G. optiva were the most frequently studied species. We found 167 chem. compounds from 12 Grewia species, allocated to 21 categories. Flavonoids represented 41.31% of the reported bioactive compounds, followed by protein and amino acids (10.7%), fats and fatty acids (9.58%), ash and minerals (6.58%), and non-flavonoid polyphenols (5.96%). Crude extracts, enriched with bioactive compounds, and isolated compounds from the Grewia species show antioxidant, anticancer, anti-inflammatory, antidiabetic, hepatoprotective/radioprotective, immunomodulatory, and sedative hypnotic potential. Moreover, antimicrobial properties, improvement in learning and memory deficits, and effectiveness against neurodegenerative ailments are also described within the reviewed article. Nowadays, the side effects of some synthetic drugs and therapies, and bottlenecks in the drug development pathway have directed the attention of researchers and pharmaceutical industries towards the development of new products that are safe, cost-effective, and readily available. However, the application of the Grewia species in pharmaceutical industries is still limited.

Computed Properties of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qiu, Lina team published research in Journal of Environmental Health Science and Engineering in 2021 | 533-73-3

Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Name: Benzene-1,2,4-triol

Qiu, Lina;Zhang, Weiwei;Gong, Aijun;Li, Jiandi research published 《 Isolation and identification of a 2,3,7,8-Tetrachlorodibenzo-P-dioxin degrading strain and its biochemical degradation pathway》, the research content is summarized as follows. This study aims to find a high-efficiency degradation strain which can biodegrade the 2,3,7,8-Tetrachlorodibenzo-P-dioxin (2,3,7,8-TCDD). In this paper, a new fungus strain was isolated from activated sludge of Dagu Drainage River in Tianjin which was able to degrade 2,3,7,8-TCDD in the medium. Based on its morphol. and phylogenetic anal. of its 18S rDNA sequence, the strain was identified as Penicillium sp. QI-1. Response surface methodol. using central composite rotatable design of cultural conditions was successfully employed for optimization resulting in 87.9% degradation of 2,3,7,8-TCDD (1μg/mL) within 6 days. The optimum condition for degrading 2,3,7,8-TCDD was at 31°C and pH 7.4. The biodegradation process was fitted to a first-order kinetic model. The kinetic equation was Ct = 0.939e-0.133t and its half-life was 5.21d. The fungus strain degraded 2,3,7,8-TCDD to form intermediates, they were 4,5-Dichloro-1,2-benzoquinone, 4,5-Dichlorocatechol, 2-Hydrooxy-1,4-benzoquinone, 1,2,4-Trihydroxybenzene and β-ketoadipic acid. A novel degradation pathway for 2,3,7,8-TCDD was proposed based on anal. of these metabolites. The results suggest that Penicillium sp. QI-1 may be an ideal microorganism for biodegradation of the 2,3,7,8-TCDD-contaminated environments.

Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ortiz-Hernandez, Ma. Laura team published research in Environmental Science and Pollution Research in 2021 | 533-73-3

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

COA of Formula: C6H6O3, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 533-73-3, name is Benzene-1,2,4-triol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Ortiz-Hernandez, Ma. Laura;Gama-Martinez, Yitzel;Fernandez-Lopez, Maikel;Castrejon-Godinez, Maria Luisa;Encarnacion, Sergio;Tovar-Sanchez, Efrain;Salazar, Emmanuel;Rodriguez, Alexis;Mussali-Galante, Patricia research published 《 Transcriptomic analysis of Burkholderia cenocepacia CEIB S5-2 during methyl parathion degradation》, the research content is summarized as follows. Methyl parathion (MP) is a highly toxic organophosphorus pesticide associated with water, soil, and air pollution events. The identification and characterization of microorganisms capable of biodegrading pollutants are an important environmental task for bioremediation of pesticide impacted sites. The strain Burkholderia cenocepacia CEIB S5-2 is a bacterium capable of efficiently hydrolyzing MP and biodegrade p-nitrophenol (PNP), the main MP hydrolysis product. Due to the high PNP toxicity over microbial living forms, the reports on bacterial PNP biodegradation are scarce. According to the genomic data, the MP- and PNP-degrading ability observed in B. cenocepacia CEIB S5-2 is related to the presence of the methyl parathion-degrading gene (mpd) and the gene cluster pnpABA′E1E2FDC, which include the genes implicated in the PNP degradation In this work, the transcriptomic anal. of the strain in the presence of MP revealed the differential expression of 257 genes, including all genes implicated in the PNP degradation, as well as a set of genes related to the sensing of environmental changes, the response to stress, and the degradation of aromatic compounds, such as translational regulators, membrane transporters, efflux pumps, and oxidative stress response genes. These findings suggest that these genes play an important role in the defense against toxic effects derived from the MP and PNP exposure. Therefore, B. cenocepacia CEIB S5-2 has a great potential for application in pesticide bioremediation approaches due to its biodegradation capabilities and the differential expression of genes for resistance to MP and PNP.

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pandard, Justine team published research in ChemElectroChem in 2022 | 533-73-3

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Related Products of 533-73-3

Pandard, Justine;Pan, Na;Ait-Yahiatene, Eric;Grimaud, Laurence;Lemaitre, Frederic;Guille-Collignon, Manon research published 《 From FFN Dual Probe Screening to ITO Microdevice for Exocytosis Monitoring: Electrochemical and Fluorescence Requirements》, the research content is summarized as follows. In this work, four different new fluorescent false neurotransmitters (FFN) probes were synthesized to contribute to the rationale of the FFN design. Their electroactive and spectroscopic properties were investigated. Hence, the optimal excitation and emission wavelengths (from 344 to 393 nm and 423 to 474 nm, resp.) make these probes adapted to fluorescence microscopy. Moreover, their electroactivity were demonstrated to occur at relatively low oxidation potentials for three of them (I, II and III: 0.26, 0.25 and 0.30 V vs. Ag/AgCl, resp.) and at 0.74 V vs. Ag/AgCl for IV on carbon fiber electrodes. However, epifluorescence observations evidenced that the new designed FFN with the best spectroscopic and electrochem. properties (III) did unfortunately not accumulate into secretory vesicles of model BON N13 cells. It thus confirms that V is currently the best “bioelectrofluorescent” compromise. This is why total internal fluorescence reflection microscopy measurements were then studied with the model V and BON N13 cells. Beyond the choice of the appropriate FFN, other anal. requirements are needed. As a consequence, the features of the transparent and conducting indium tin oxide (ITO) microdevice for coupled amperometry-fluorescent measurements were investigated and optimized in terms of effects on the electrochem. performances and reusability. These results pave the way for future coupled investigations of exocytosis with the FFN-ITO device association

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pantwalawalkar, Jidnyasa team published research in Journal of Drug Delivery Science and Technology in 2021 | 533-73-3

Safety of Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of Benzene-1,2,4-triol

Pantwalawalkar, Jidnyasa;More, Harinath;Bhange, Deu;Patil, Udaykumar;Jadhav, Namdeo research published 《 Novel curcumin ascorbic acid cocrystal for improved solubility》, the research content is summarized as follows. The present investigation aims to develop novel curcumin-ascorbic acid cocrystal for enhancing the solubility, stability, and complementary biol. activities for curcumin. Based on in silico approach to screen ascorbic acid as a coformer for curcumin, cocrystals were prepared by the solvent evaporation method, and further evaluated for saturation solubility, cocrystal propensity, physicochem. interactions (FTIR and DSC), XRD, drug dissolution, etc. In silico findings confirmed the suitability (H_ex, G_mix) of ascorbic acid for the cocrystn. of curcumin. The DSC and XRD data of the solvent evaporated curcumin-ascorbic acid mixture confirmed the formation of cocrystal, eutectic, and binary mixture with an excess of coformer. The binary phase diagram implied 0.5 to the 0.65-mol fraction of curcumin, essential for cocrystn. with ascorbic acid. The novel curcumin ascorbic acid cocrystals revealed extraordinary improvement in aqueous solubility of curcumin, especially, 576 fold in distilled water, 10 fold in the buffer pH 1.2, and 9 fold in the buffer pH 6.8. The curcumin-ascorbic acid cocrystal system exhibited a superior dissolution profile compared to neat curcumin. Thus, ascorbic acid has enunciated its role as a coformer for curcumin in cocrystal formation, which has been complemented by predicted complementary biol. activities, and stability (acidic milieu).

Safety of Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Park, Hanwoo team published research in Progress in Organic Coatings in 2021 | 533-73-3

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 533-73-3, formula is C6H6O3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. COA of Formula: C6H6O3

Park, Hanwoo;Kim, Dukjoon research published 《 A rapid hydrophilization of porous poly(tetrafluoroethylene) film via co-deposition of phenol derivatives and polyethyleneimine》, the research content is summarized as follows. A series of hydrophilized porous polytetrafluoroethylene (PTFE) membranes were prepared by a mussel-inspired coating method. Various types of phenol derivatives possessing different number of hydroxide groups at different position such as hydroquinone, pyrogallol, hydroxyhydroquinone were applied along with polyethyleneimine (PEI) to seek for the fast and stable surface modification. The co-deposition kinetics of phenol/PEI pair on the porous PTFE membranes was examined using the UV spectroscopy, Fourier transform IR spectroscopy, and XPS. Surface morphol. and pore diameter were analyzed by the field emission SEM and mercury porosimetry. To confirm the complete surface hydrophilicity, water contact angle was measured as a function of time for different co-deposition pairs. Among several phenol derivatives paired with PEI, hydroxyhydroquinone showed the fastest deposition rate (in about 40 min) for excellent hydrophilicity and stability. The chem. modification method applied in this study showed the long-term stability in commonly used and harsh solvents including acidic and basic solutions compared to the other phys. and chem. methods previously reported.

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts