Pillow, Thomas H.’s team published research in ChemMedChem in 15 | CAS: 73303-88-5

ChemMedChem published new progress about 73303-88-5. 73303-88-5 belongs to alcohols-buliding-blocks, auxiliary class Thiol,Aliphatic hydrocarbon chain,Alcohol, name is 2-Methyl-2-sulfanylpropan-1-ol, and the molecular formula is C4H10OS, Application of 2-Methyl-2-sulfanylpropan-1-ol.

Pillow, Thomas H. published the artcileAntibody Conjugation of a Chimeric BET Degrader Enables in vivo Activity, Application of 2-Methyl-2-sulfanylpropan-1-ol, the publication is ChemMedChem (2020), 15(1), 17-25, database is CAplus and MEDLINE.

The ability to selectively degrade proteins with bifunctional small mols. has the potential to fundamentally alter therapy in a variety of diseases. However, the relatively large size of these chimeric mols. often results in challenging physico-chem. properties (e. g., low aqueous solubility) and poor pharmacokinetics which may complicate their in vivo applications. We recently discovered an exquisitely potent chimeric BET degrader (GNE-987) which exhibited picomolar cell potencies but also demonstrated low in vivo exposures. In an effort to improve the pharmacokinetic properties of this mol., we discovered the first degrader-antibody conjugate by attaching GNE-987 to an anti-CLL1 antibody via a novel linker. A single IV dose of the conjugate afforded sustained in vivo exposures that resulted in antigen-specific tumor regressions. Enhancement of a chimeric protein degrader with poor in vivo properties through antibody conjugation thereby expands the utility of directed protein degradation as both a biol. tool and a therapeutic possibility.

ChemMedChem published new progress about 73303-88-5. 73303-88-5 belongs to alcohols-buliding-blocks, auxiliary class Thiol,Aliphatic hydrocarbon chain,Alcohol, name is 2-Methyl-2-sulfanylpropan-1-ol, and the molecular formula is C4H10OS, Application of 2-Methyl-2-sulfanylpropan-1-ol.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Leal, Emilse S.’s team published research in European Journal of Medicinal Chemistry in 182 | CAS: 622-40-2

European Journal of Medicinal Chemistry published new progress about 622-40-2. 622-40-2 belongs to alcohols-buliding-blocks, auxiliary class Morpholine,Alcohol, name is 2-Morpholinoethanol, and the molecular formula is C6H13NO2, Related Products of alcohols-buliding-blocks.

Leal, Emilse S. published the artcileDe novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus, Related Products of alcohols-buliding-blocks, the publication is European Journal of Medicinal Chemistry (2019), 111628, database is CAplus and MEDLINE.

Dengue fever is a mosquito-borne viral disease that has become a major public health concern worldwide. This disease presents with a wide range of clin. manifestations, from a mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, neither an approved drug nor an effective vaccine for the treatment are available to fight the disease. The envelope protein (E) is a major component of the virion surface. This protein plays a key role during the viral entry process, constituting an attractive target for the development of antiviral drugs. The crystal structure of the E protein reveals the existence of a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG). This pocket lies at the hinge region between domains I and II and is important for the low pH-triggered conformational rearrangement required for the fusion of the virion with the host’s cell. Aiming at the design of novel mols. which bind to E and act as virus entry inhibitors, we undertook a de novo design approach by “growing” mols. inside the hydrophobic site (β-OG). From more than 240000 small-mols. generated, the 2,4 pyrimidine scaffold was selected as the best candidate, from which one synthesized compound displayed micromolar activity. Mol. dynamics-based optimization was performed on this hit, and thirty derivatives were designed in silico, synthesized and evaluated on their capacity to inhibit dengue virus entry into the host cell. Four compounds were found to be potent antiviral compounds in the low-micromolar range. The assessment of drug-like physicochem. and in vitro pharmacokinetic properties revealed that compounds 3e and 3h presented acceptable solubility values and were stable in mouse plasma, simulated gastric fluid, simulated intestinal fluid, and phosphate buffered saline solution pyrimidine.

European Journal of Medicinal Chemistry published new progress about 622-40-2. 622-40-2 belongs to alcohols-buliding-blocks, auxiliary class Morpholine,Alcohol, name is 2-Morpholinoethanol, and the molecular formula is C6H13NO2, Related Products of alcohols-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Bottari, Giovanni’s team published research in Advanced Synthesis & Catalysis in 363 | CAS: 111-29-5

Advanced Synthesis & Catalysis published new progress about 111-29-5. 111-29-5 belongs to alcohols-buliding-blocks, auxiliary class Aliphatic hydrocarbon chain,Alcohol,Ploymers, name is Pentane-1,5-diol, and the molecular formula is C5H12O2, Application In Synthesis of 111-29-5.

Bottari, Giovanni published the artcileSynthesis of Enantioenriched Amines by Iron-Catalysed Amination of Alcohols Employing at Least One Achiral Substrate, Application In Synthesis of 111-29-5, the publication is Advanced Synthesis & Catalysis (2021), 363(24), 5436-5442, database is CAplus.

The synthesis of a broad range of enantioenriched amines by the direct Fe-catalyzed coupling of amines with alcs. through the borrowing hydrogen strategy, while at least one of these substrates was achiral is reported. When starting from α-chiral amines and achiral alcs., a wide range of enantioenriched amine products, including N-heterocyclic moieties was obtained with complete retention of stereochem.. The power of this method was demonstrated in the one-step synthesis of known pharmaceuticals from com. available, simple enantiopure primary amines and achiral alcs. It was also found that the use of β-branched enantioenriched primary alcs. and achiral amines as reaction partners leads to a partial loss of stereochem. integrity in the final product, however, a systematic optimization enabled partial retention of enantiopurity and possible parameters effecting for racemization were identified.

Advanced Synthesis & Catalysis published new progress about 111-29-5. 111-29-5 belongs to alcohols-buliding-blocks, auxiliary class Aliphatic hydrocarbon chain,Alcohol,Ploymers, name is Pentane-1,5-diol, and the molecular formula is C5H12O2, Application In Synthesis of 111-29-5.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Pawle, Robert H.’s team published research in Macromolecules (Washington, DC, United States) in 47 | CAS: 2240-88-2

Macromolecules (Washington, DC, United States) published new progress about 2240-88-2. 2240-88-2 belongs to alcohols-buliding-blocks, auxiliary class Trifluoromethyl,Fluoride,Aliphatic hydrocarbon chain,Alcohol, name is 3,3,3-Trifluoropropan-1-ol, and the molecular formula is C3H5F3O, Related Products of alcohols-buliding-blocks.

Pawle, Robert H. published the artcileBandgap Engineering of Conjugated Materials with Nonconjugated Side Chains, Related Products of alcohols-buliding-blocks, the publication is Macromolecules (Washington, DC, United States) (2014), 47(7), 2250-2256, database is CAplus.

Controlling the optical properties of conjugated materials, especially their bandgaps, is critical to nearly all of applications of these materials. The most prevalent strategy involves changes to the structures of conjugated backbones, while side chains are generally reserved for imparting solubility This paper, using a series of donor-acceptor conjugated oligo- and poly(arylene-ethynylene)s that have terephthalate units as the electron-deficient unit, demonstrates examples of how the structures of side chains that are not formally part of the conjugated backbone can have significant effects on bandgaps of these materials. In organic solution, changing alkoxy substituents on the terephthalate unit yields changes in absorbance onsets of, in some cases, greater than 20 nm; the position of absorbance spectra of these materials correlates with the Taft σ* values of the ester alkoxy groups, consistent with the side chains inductively altering the electron-accepting nature of the terephthalate ring. This structure-property relationship persists in the solid state. These results indicate that synthetically simple side-chain substitutions of formally nonconjugated groups may be useful in rational design of the optoelectronic properties of conjugated materials in both solution and the solid state.

Macromolecules (Washington, DC, United States) published new progress about 2240-88-2. 2240-88-2 belongs to alcohols-buliding-blocks, auxiliary class Trifluoromethyl,Fluoride,Aliphatic hydrocarbon chain,Alcohol, name is 3,3,3-Trifluoropropan-1-ol, and the molecular formula is C3H5F3O, Related Products of alcohols-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Lagerspets, Emi’s team published research in Molecular Catalysis in 520 | CAS: 111-29-5

Molecular Catalysis published new progress about 111-29-5. 111-29-5 belongs to alcohols-buliding-blocks, auxiliary class Aliphatic hydrocarbon chain,Alcohol,Ploymers, name is Pentane-1,5-diol, and the molecular formula is C5H12O2, Quality Control of 111-29-5.

Lagerspets, Emi published the artcileWater tolerant base free Copper (I) catalyst for the selective aerobic oxidation of primary alcohols, Quality Control of 111-29-5, the publication is Molecular Catalysis (2022), 112167, database is CAplus.

Authors report here a base free copper(I) catalyst for the selective aerobic oxidation of primary alcs. to their corresponding aldehydes and various diols to their corresponding lactones or lactols. In the presence of the in situ generated Cu(I)-catalyst with 2,2′-dipyridylamine (dpa) as a ligand and 2,2,6,6-tetramethylpiperdine-N-oxyl (TEMPO) as a persistent radical, the oxidation reaction proceeds under true aerobic conditions, at ambient temperature, utilizing air as the oxidant and without added base. High catalytic activity without over oxidation was achieved for numerous primary alcs. (aliphatic, allylic, benzylic and diols) with different substitution patterns. The catalyst’s stability is unique among reported Cu(I)-catalysts. It is not moisture or air sensitive, and is capable of e.g. oxidizing aliphatic and benzyl alcs. in a water/acetonitrile solution in moderate or in quant. yield (> 99%) in 3 h.

Molecular Catalysis published new progress about 111-29-5. 111-29-5 belongs to alcohols-buliding-blocks, auxiliary class Aliphatic hydrocarbon chain,Alcohol,Ploymers, name is Pentane-1,5-diol, and the molecular formula is C5H12O2, Quality Control of 111-29-5.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Zhong, Yao team published research in ACS Sustainable Chemistry & Engineering in 2022 | 533-73-3

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Related Products of 533-73-3

Zhong, Yao;Zhong, Jin;Cai, Taimei;Chen, Shixia;Wang, Jun;Zeng, Zheling;Deng, Qiang research published 《 Controlled Synthesis of Dibenzenetriol and Diquinone from 1,2,4-Benzenetriol by Catalytic Aerobic Oxidation》, the research content is summarized as follows. The preparation of diphenol and diquinone from biomass is significant for sustainable fine chems., which are currently developed from fossil-based or lignin-derived phenols. Herein, a class of transition-metal oxides (CeO2, MoO3, and MoO3/CeO2) with different O2 activation abilities and basicity was prepared for the catalytic aerobic oxidation of 1,2,4-benzenetriol to dibenzenetriol and diquinone. CeO2 with a moderate O2 activation ability and basicity shows a 98% yield of dibenzenetriol upon the oxidative coupling reaction, whereas MoO3/CeO2 with a strong O2 activation ability and basicity results in a highly efficient synthesis of diquinone with a 79% yield via tandem oxidative coupling and further oxidation reactions. Meanwhile, these metal oxides exhibit stable recycling performance and reusability. This work can lead to the facile and efficient synthesis of dibenzenetriol and diquinone, which is unattainable with the previous lignin-based route.

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhou, Mingyue team published research in Frontiers in Pharmacology in 2021 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Product Details of C6H6O3

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C6H6O3

Zhou, Mingyue;Huo, Jinhai;Wang, Cairen;Wang, Weiming research published 《 UPLC/Q-TOF MS screening and identification of antibacterial compounds in Forsythia suspensa (Thunb.) vahl leaves》, the research content is summarized as follows. Forsythia suspensa (Thunb.) Vahl (F. suspensa) is a traditional Chinese medical herb and only its fruit is currently used in clin. therapies. However, the discarded parts like leaves also contain a large number of active components. In this study, we used macroporous adsorption resin to enrich the effective components from F. suspensa leaves. The separated active compounds were then identified and quantified by ultra-performance liquid chromatog. coupled with quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS) and high-performance liquid chromatog. Active components with antibacterial properties extracted from F. suspensa leaves were confirmed in vitro and the corresponding mechanisms were explored. In sum, a stable and effective method for extracting antibacterial active components from F. suspensa leaves was established in this study, which proved the practicability of F. suspensa leaves as traditional Chinese medicine and is conducive to the more comprehensive utilization of the plant.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Product Details of C6H6O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Bin team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2021 | 533-73-3

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 533-73-3

Zhao, Bin;Yu, Hongbin;Liu, Yanpeng;Lu, Ying;Fan, Wei;Qin, Weichao;Huo, Mingxin research published 《 Enhanced photoelectrocatalytic degradation of acetaminophen using a bifacial electrode of praseodymium-polyethylene glycol-PbO2//Ti//TiO2-nanotubes》, the research content is summarized as follows. A bifacial electrode-praseodymium-polyethylene glycol-PbO2//Ti//TiO2-nanotubes-was prepared for the photoelectrocatalytic degradation of acetaminophen. The physicochem. properties of the bifacial electrode (e.g. morphol., structure, light absorption, and electrochem. behavior) were systematically characterized. The effects of solution pH, electrolyte concentration, and c.d. on the removal of acetaminophen were investigated. With this bifacial electrode, approx. 97% of acetaminophen and 73% of COD could be removed in 180 min. Compared with photocatalysis and electrocatalysis alone, the photoelectrocatalytic process exhibited a higher average current efficiency and lower energy consumption. This improved performance was attributed to the enhancement of the generation of reactive oxygen species (e.g. HO· and H2O2). Addnl., the intermediates generated in photoelectrocatalytic processes were identified, and two possible degradation pathways were proposed (i.e. direct degradation by HO· attack and acetaminophen dimerization). The ECOSAR prediction based on the mol. structure of intermediates revealed that some products more toxic than parent compounds were formed during photoelectrocatalysis. The acute toxicity test results confirmed that the global toxicity of the treated solution increased in the first 60 min of treatment. Generally, identifying the intermediates and characterizing the evolution of toxicity is important in the acetaminophen-related wastewater treatment for minimizing the potential ecol. risks of effluents.

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Chaoxia team published research in Journal of Hazardous Materials in 2021 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., COA of Formula: C6H6O3

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , COA of Formula: C6H6O3

Zhao, Chaoxia;Xue, Li;Zhou, Yanping;Zhang, Yi;Huang, Kama research published 《 A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol》, the research content is summarized as follows. Plasma technol. has received intensive research interest in pollutants degradation However, conventional plasma generator suffers from erosion of electrodes and consequent short life time and pollution. In this work, an electrodeless high-flow microwave atm. plasma jet is developed for fast degradation of p-nitrophenol. With the assistance of injection locking technol., stable plasma is managed to be generated by low-cost magnetron. 100% removal of 100 mg/L PNP is achieved after 12 min, with a TOC removal efficiency of 57.6%. The fast degradation is probably due to the high cross section (around 153 mm2) of plasma gas. Change in the removal efficiency are less than 4% and 5% as the pH of the solution changes from 2.02 to 12.07 and conductivity varies between 5.38 x 10-2 and 43.6 mS/cm, resp. Moreover, optical emission spectroscopy spectra of the microwave plasma and a hydroxyl radical scavenger (t-butanol) are employed to identify the generated oxidizing species, which indicates that •OH is the key factor during the degradation process. The hydroxylated intermediates and organic acid transformed from PNP were revealed. Based on the examined intermediate products, the possible degradation mechanism and pathway are analyzed.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., COA of Formula: C6H6O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Zhimin team published research in Journal of Rare Earths in | 533-73-3

Electric Literature of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 533-73-3

Zhao, Zhimin;Liu, Jinjia;Sa, Gala;Xu, Aiju research published 《 Electronic properties and photodegradation ability of Nd-TiO2 for phenol》, the research content is summarized as follows. In this study, the photocatalytic activity of Nd-TiO2 photocatalysts obtained by common hydrothermal method was evaluated by practical experiments and theor. calculations based on d. functional theory (DFT). The synthesized photocatalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform IR spectroscopy (FT-IR), high resolution transmission electron microscopy (HRTEM), XPS, UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) to study their phys./chem. properties. At the same time, the photoelectronic performance was also investigated. The photodegradation ability of as-prepared photocatalysts and the effect of Nd doped amount and photocatalysts dosage were investigated by the photodegradation of phenol (30 mg/L) under 400 W metal halide lamp (UV-Vis). The effect of Nd on electronic properties of TiO2 and adsorption ability of phenol were discussed. Results show the red-shift wavelength of 0.5 mol%Nd-TiO2, indicating that its absorption capacity is stronger than pristine TiO2 in the same wavelength range. The result of DFT calculations demonstrates that the optical bandgap of Nd-TiO2 is profoundly reduced, thus the light absorption ability is promoted, which will be responsible for the enhanced photocatalytic performance of Nd-TiO2. 0.5 mol% Nd is an optimum value for photodegradation phenol, and phenol can be completely degraded by 0.5 mol%Nd-TiO2 for 210 min, the higher catalytic performance is derived from the efficient separation of e/h+ pairs. Moreover, the adsorption energy calculations of phenol on TiO2 (101) and Nd-TiO2 (101) demonstrate that the Nd doping can significantly enhance the adsorption ability of phenol on catalyst surfaces because of the formation of Nd-O bonds. At last, the stability measurement through four recycles exhibits that 0.5 mol%Nd-TiO2 possesses excellent stability.

Electric Literature of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts