Poladian, Qumars et al. published their research in Polyhedron in 2021 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C8H10ClNO3

A new zinc(II) complex with N2O2-tetradentate Schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies was written by Poladian, Qumars;Sahin, Onur;Karakurt, Tuncay;Ilhan-Ceylan, Berat;Kurt, Yasemin. And the article was included in Polyhedron in 2021.Electric Literature of C8H10ClNO3 The following contents are mentioned in the article:

A new unsym. N2O2-tetradentate Schiff-base complex of zinc(II) was synthesized by the template reaction of pyridoxal-S-methylthiosemicarbazone and 2-hydroxy-4-methoxy-benzaldehyde as starting compounds S-methylthiosemicarbazone (1) and zinc(II) complex [Zn(L)CH3OH] (2) were characterized by elemental anal., FT-IR, UV-visible, 1H, and 13C NMR spectra. The mol. structure of 2 was determined by single crystal X-ray diffraction technique. The structure consists of a distorted square-pyramidal geometry around the central metal, Zn(II). Quantum chem. calculations were carried out using d. functional theory DFT/B3LYP, 6-31G (d), and LanL2DZ basis sets for theor. characterization of the compounds The exptl. and theor. data were compared comprehensively. The potential energy distribution (PED) anal. was performed for the assignment of vibration frequencies. In order to support in vitro studies, mol. docking studies were carried out so that the title compound can be an inhibitor of Epidermal Growth Factor Receptor (1 m17), and the relationship between calculated HOMO energies and docking studies was examined In addition, the total antioxidant capacity (as TEAC value) and free radical scavenging activity of the compounds were determined by Cupric Reducing Antioxidant Capacity (CUPRAC) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) methods, resp. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Electric Literature of C8H10ClNO3).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C8H10ClNO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ren, Rui et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C9H18O5S

Development of Comprehensive Serological Techniques for Sensitive, Quantitative and Rapid Detection of Soybean mosaic virus was written by Ren, Rui;Wang, Tao;Gao, Le;Song, Puwen;Yang, Yunhua;Zhi, Haijian;Li, Kai. And the article was included in International Journal of Molecular Sciences in 2022.Electric Literature of C9H18O5S The following contents are mentioned in the article:

Soybean is an important grain and oil crop worldwide; however, the yield and seed quality of which are seriously affected by Soybean mosaic virus (SMV). As efficient detection technol. is crucial for the field management of SMV, novel immunol. detection methods were developed in the present study. According to the phylogenetic anal., the CP coding sequence of SMV-SC7 was selected for the prokaryotic expression of the recombinant SMV-CP. Purified SMV-CP was used for the development of polyclonal antibodies (PAb) against the SMV-CP (PAb-SMV-CP) and monoclonal antibodies (MAb) against SMV-CP (MAb-SMV-CP). Subsequently, the PAb-SMV-CP was used for the development of a novel DAS- quant. ELISA (DAS-qELISA) kit, of which the sensitivity was greater than 1:4000, and this could be used for the quant. detection of SMV in China. Meanwhile, the MAb-SMV-CP was labeled with colloidal gold, and then was used for the development of the SMV-specific gold immunochromatog. strip (SMV-GICS). The SMV-GICS gives accurate detection results through observed control lines and test lines in 5 to 10 min, sharing the same sensitivity as RT-PCR, and can be used for rapid, accurate and high-throughput field SMV detection. The DAS-qELISA kit and the SMV-GICA strip developed in this study are SMV-specific, sensitive, cheap and easy to use. These products will be conducive to the timely, efficient SMV epidemiol. and detection in major soybean-producing regions in China and abroad. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Electric Literature of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Shengdi et al. published their research in Toxicology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Reference of 620-92-8

Bisphenol S promotes the progression of prostate cancer by regulating the expression of COL1A1 and COL1A2 was written by Liu, Shengdi;He, Bin;Li, Hua. And the article was included in Toxicology in 2022.Reference of 620-92-8 The following contents are mentioned in the article:

In recent decades, Bisphenol S (BPS), which was once thought to be an alternative for Bisphenol A (BPA) has been extensively used in personal care products, paper products, and food. However, there is an unclear association between bisphenol and tumors. Therefore, clarifying this relationship is critical for disease prevention and treatment. This work found a novel method that predicts a correlation between bisphenol interactive genes and tumors. First, the transcriptome profile and interactive genes of bisphenol were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression, Comparative Toxicol. Genomics, and PharmMapper databases. Gene Ontol. and Kyoto Encyclopedia of Genes and Genomes anal. revealed that interactive genes are primarily enriched in prostate cancer. Gene targeted prediction and gene set variation anal. confirmed that bisphenol exerts potential effects on prostate cancer. The operating characteristic curves and survival anal. uncovered the role of COL1A1 and COL1A2 in predicting the prognosis of prostate cancer. Cell counting kit-8 assay revealed that BPS-treated cells could remarkably promote cell proliferation capacity in both PC-3 and LNCap cells. In addition, wound healing and transwell assays demonstrated that BPS-treated cells could significantly promote the cell invasion capacity of prostate cells. Notably, two key genes, i.e., COL1A1 and COL1A2 were significantly upregulated with BPS-treated PC-3 and LNCap cells. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Reference of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Reference of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qi, Jinxu et al. published their research in Journal of Inorganic Biochemistry in 2022 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Synthetic Route of C8H10ClNO3

Pyridoxal hydrochloride thiosemicarbazones with copper ions inhibit cell division via Topo-I and Topo-II was written by Qi, Jinxu;Zheng, Yunyun;Li, Bin;Ai, Yu;Chen, Mengyao;Zheng, Xinhua. And the article was included in Journal of Inorganic Biochemistry in 2022.Synthetic Route of C8H10ClNO3 The following contents are mentioned in the article:

Topoisomerase (Topo) accelerates cell growth and division, and has been a theor. target for anti-cancer drugs for decades. A series of pyridoxal thiosemicarbazone (PLT) ligands were designed and synthesized, and the dependence of their antiproliferative activity on copper was investigated. The insertion of N-cyclohexyl-2-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)-N-methylhydrazinecarbothioamide hydrochloride (compound 9) and Chlorido(N-cyclohexyl-2-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)-N-methylhydrazinecarbothioamide hydrochloride-O,N,S)-copper(II) nitrate (9-Cu complex) into Topo-I and Topo-II prevented uncoiling of DNA through hydrogen bonds and intermol. forces. The combination of PLT derivatives and copper gluconate (CuGlu) improved their anti-tumor activity against a cell line with high expression of topoisomerase (SK-BR-3). The non-linear regression equations of the inhibitory activity and anti-tumor activity of Topo-I and Topo-II in SK-BR-3 cells had R2 values of 0.93 and 0.94, resp. In addition to lipophilicity, inhibition of topoisomerase also affected the activity of PLT ligands by coordinating with copper ions. At the cellular level, PLTs and CuGlu penetrate the cell membrane to form metabolites in the cell, thus selectively inhibiting the activity of Topo-I and Topo-II, and ultimately inhibiting cell division. These findings will inform the design of future anti-cancer thiosemicarbazone drugs. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Synthetic Route of C8H10ClNO3).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Synthetic Route of C8H10ClNO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Vatandoust, Sina et al. published their research in Asia-Pacific journal of clinical oncology in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Phase 1 trial of intraperitoneal paclitaxel in combination with intravenous cisplatin and oral capecitabine in patients with advanced gastric cancer and peritoneal metastases (IPGP study). was written by Vatandoust, Sina;Bright, Tim;Roy, Amitesh Chandra;Abbas, Muhammad Nazim;Watson, David Ian;Gan, Susan;Bull, Jeff;Sorich, Michael;Scott-Hoy, Alex;Luu, Lee-Jen;Karapetis, Christos Stelios. And the article was included in Asia-Pacific journal of clinical oncology in 2022.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

AIMS: Gastric cancer with peritoneal involvement has a poor prognosis. Intraperitoneal (IP) paclitaxel has shown promising results in these patients. However, this approach has only been studied in the Asian population, and in combination with S-1. We investigated the maximum tolerated dose of IP paclitaxel, with a standard chemotherapy combination, in the Australian population. METHODS: The study of the population included metastatic human epidermal growth factor receptor 2 (HER2) negative gastric adenocarcinoma with peritoneal involvement. Treatment included six 21-day cycles of cisplatin (80 mg/m2 IV, day 1) plus capecitabine (1000 mg/m2 PO BD, days 1-14) plus IP paclitaxel (days 1 and 8). IP paclitaxel doses for cohort 1-3 were 10, 20, and 30 mg/m2 , respectively, in a 3 + 3 standard dose-escalation design. RESULTS: Fifteen patients were enrolled of which 6 were female and the median age was 63. Two patients developed dose-limiting toxicities. No grade 4/5 toxicities were recorded. The maximum tolerated dose was not reached. Therefore, as defined by the study protocol, the recommended phase-2 dose for IP paclitaxel was determined to be 30 mg/m2 . The 12-month survival rate was 46.7%, and the median survival was 11.5 months (interquartile range [IQR]: 15.3-6.9). CONCLUSIONS: IP paclitaxel is safe in combination with cisplatin and capecitabine and the recommended phase-2 dose is 30 mg/m2 . This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Flores-Nuñez, Astrid et al. published their research in Revista peruana de medicina experimental y salud publica in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C9H18O5S

Cloning, expression and seroreactivity of the recombinant lipopolysaccharide assembly protein – D (LptD) from Bartonella bacilliformis. was written by Flores-Nuñez, Astrid;Ventura, Gladis;Bailon, Henri;Marcelo, Adolfo;Sandoval, Gustavo;Padilla-Rojas, Carlos. And the article was included in Revista peruana de medicina experimental y salud publica in 2022.Electric Literature of C9H18O5S The following contents are mentioned in the article:

OBJECTIVE.: To evaluate in silico and at the serological level the antigenic potential of the recombinant extracellular domain of the lipopolysaccharide assembly protein – D (LptD) of Bartonella bacilliformis (dexr_LptD). MATERIALS AND METHODS.: Through in silico analysis, we selected a B. bacilliformis protein with antigenic and immunogenic potential. The selected protein gene was cloned into Escherichia coli TOP10 and expressed in Escherichia coli BL21 (DE3) pLysS. Recombinant protein was expressed using isopropyl-β-D-1-thiogalactopyranoside (IPTG) and induction conditions were optimized. Finally, it was purified with Ni-IDA resin (His60 Ni Superflow) and a Western Blot assay was conducted. RESULTS.: In silico, the selected protein was LptD because it is located in the outer membrane and is antigenic and immunogenic. Optimized conditions for dexr_LptD induction were 0.5 mM IPTG, 16 hours, TB (Terrific Broth) medium, 3% (v/v) ethanol, 28 ºC, OD600: 1-1.5 and 200 rpm. Purification was carried out under denaturating conditions on a small scale and we obtained 2.6 μg/mL of partially purified dexr_LptD. The Western Blot assay showed a positive reaction between the sera from patients with Carrión’s Disease and dexr_LptD, which shows the antigenicity of dexr_LptD. CONCLUSIONS.: The dexr_LptD shows antigenicity both in silico and at the serological level, these results are the basis for further studies on vaccine candidates against Carrion’s Disease. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Electric Literature of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qi, Ying et al. published their research in Analytical Biochemistry in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.HPLC of Formula: 367-93-1

Expression, purification, characterization and direct electrochemistry of two HiPIPs from Acidithiobacillus caldus SM-1 was written by Qi, Ying;Shangguan, Xiangdong;He, Jiayu;Chen, Lixiang;Jin, Jing;Liu, Yuandong;Qiu, Guanzhou;Yu, Runlan;Li, Jiaokun;Zeng, Weimin;Shen, Li;Wu, Xueling. And the article was included in Analytical Biochemistry in 2022.HPLC of Formula: 367-93-1 The following contents are mentioned in the article:

High-potential iron-sulfur proteins (HiPIPs) from extremely acidophilic chemolithotrophic non-photosynthetic Acidithiobacillus commonly play a crucial role in ferrous or sulfurous biooxidation Acidithiobacillus exhibit important industrial applications for bioleaching valuable metals from sulfide ores. In this study, two HiPIP genes from thermophilic Acidithiobacillus caldus SM-1 were cloned and successfully expressed, and their proteins were purified. The proteins displayed a brownish color with an optical absorbance peak at approx. 385 nm and an electronic paramagnetic resonance (EPR) g value of approx. 2.01, which confirmed that the iron-sulfur cluster was correctly inserted into the active site when the proteins were generated in E. coli. The proteins were more thermostable than HiPIPs from mesophilic Acidithiobacillus. The direct electron transfer (DET) between HiPIPs and electrode was achieved by the 2-mercaptopyrimidine (MP) surface-modified gold electrodes; the redox potentials of the HiPIP1 and HiPIP2 measured by cyclic voltammetry were approx. 304.5 mV and 400.5 mV, resp. The electron transfer rate constant was estimated to be 0.75 s-1 and 0.66 s-1, resp. The MP/Au electrode and Au electrode showed consistent differences in heterogeneous electron transfer rates and electron transfer resistances. Bioinformatics and mol. simulations further explained the direct electron transfer between the proteins and surface-modified electrode. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1HPLC of Formula: 367-93-1).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.HPLC of Formula: 367-93-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mehta, Deepa et al. published their research in Biochemical Engineering Journal in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Cloning and expression of antibody fragment (Fab) I: Effect of expression construct and induction strategies on light and heavy chain gene expression was written by Mehta, Deepa;Chirmade, Tejas;Tungekar, Aatir A.;Gani, Kayanat;Bhambure, Rahul. And the article was included in Biochemical Engineering Journal in 2021.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

Dual promoter expression constructs offer time and cost-effective alternatives to produce multi-domain proteins like antibody fragments. This investigation is focused on understanding the effect of expression construct (dual promoter vs. co-transformation strategy), codon optimization, and induction strategies on yield and expression stoichiometry of LC and HC genes of antibody fragment at shake-flask and bioreactor scale. rHu biosimilar Ranibizumab was selected as a model protein for the study. Expression stoichiometry of HC and LC gene at mRNA level was studied using RTqPCR, whereas protein expression level was studied quant. using RP-HPLC and SDS-PAGE anal. In the case of dual promoter expression construct, it was observed that LC gene cloned in the MCS1 of the duet vectors has > 2-fold expression than the HC gene, cloned in the MCS2. Transcript abundance profile of the HC and LC genes determined at different time intervals post-induction shows a difference in the gene expression at the transcriptional level. Comparative anal. of dual promoter and co-transformation strategy shows better stoichiometry in co-transformation (1:1.3), whereas higher protein yield in a dual expression system (>2.4 fold). The use of lactose and galactose as inducers show higher Fab yield of 2.30 ± 0.03 g/L and 2.81 ± 0.06 g/L with expression stoichiometry of 1:1.9 and 1:2 (HC: LC) resp. than IPTG-based induction with a protein yield of 1.40 ± 0.02 g/L. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wei, Xianping et al. published their research in Environmental Research in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Co-exposure and health risks of several typical endocrine disrupting chemicals in general population in eastern China was written by Wei, Xianping;Hu, Yu;Zhu, Qingqing;Gao, Jia;Liao, Chunyang;Jiang, Guibin. And the article was included in Environmental Research in 2022.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Human exposure to endocrine disrupting chems. (EDCs) is a health concern due to their wide use and interference with the human endocrine system. Parabens, bisphenols, benzophenones, triclosan (TCC), triclocarban (TCS), and tetrabromobisphenol-A (TBBPA) and its derivatives tetrachlorobisphenol-A (TCBPA) and tetrabromobisphenol-S (TBBPS), are typical EDCs that are frequently detected in environmental and human samples. However, only a few studies have assessed the co-exposure of these chems. in humans. In this study, urine samples were collected from the general population in the city of Wuxi (n = 121) and a county, Taishun (n = 120), eastern China, and analyzed for these EDCs. Parabens, bisphenols, TCS, and benzophenones were frequently detected in urine, whereas TBBPA and its derivatives were not detected. The geometric mean concentrations of parabens, bisphenols, and benzophenones in urine from the Wuxi population were 25.7, 2.45, and 2.34 ng/mL, resp., which were substantially higher than those from the Taishun population (17.2, 1.70, and 2.65 ng/mL). These results suggest an urban-rural difference in urinary EDCs. The exposure risks to these EDCs were estimated based on the measured urinary concentrations and acceptable daily intakes (ADIs). Hazard quotient values for EDCs in humans from both locations were generally less than 1, indicating a low exposure risk of EDCs in these regions. Nonetheless, the health risks caused by co-exposure to such EDCs cannot be ignored. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Category: alcohols-buliding-blocks).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Han, Yu et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Product Details of 620-92-8

Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China was written by Han, Yu;Hu, Li-Xin;Liu, Ting;Liu, Jing;Wang, Yu-Qing;Zhao, Jia-Hui;Liu, You-Sheng;Zhao, Jian-Liang;Ying, Guang-Guo. And the article was included in Science of the Total Environment in 2022.Product Details of 620-92-8 The following contents are mentioned in the article:

Landfill sites have been regarded as a significant source of chems. of emerging concern (CECs) in groundwater. However, our understanding about the compositions of CECs in landfill leachate and adjacent groundwater is still very limited. Here we investigated the CECs in landfill leachates and groundwater of Guangzhou in South China by target, suspect and non-target anal. using high-resolution mass spectrometry (HRMS). A variety of CECs (n = 242), including pharmaceuticals (n = 64), pharmaceutical intermediates (n = 18), personal care products (n = 9), food additives (n = 18), industrial chems. (n = 82, e.g., flame retardants, plasticizers, antioxidants and catalysts), pesticides (n = 26), transformation products (n = 8) and other organic compounds (n = 17) were (tentatively) identified by non-target and suspect screening. 142 CECs were quantitated with target anal., and among them 37, 24 and 27 CECs were detected resp. in the raw leachate (272-1780μg/L), treated leachate (0.25-0.81μg/L) and groundwater (0.10-53.7μg/L). The CECs in the raw leachates were efficiently removed with the removal efficiencies greater than 88.7%. Acesulfame, bisphenol F and ketoprofen were the most abundant compounds in both treated leachate and groundwater. The CECs in groundwater was found most likely to be originated from the landfill sites. Our results highlight the importance of non-target screening in identifying CECs, and reveal the contamination risk of groundwater by landfill leachate. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Product Details of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Product Details of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts