Spencer, Ashley et al. published their research in Contact Dermatitis in 2016 | CAS: 4074-88-8

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application of 4074-88-8

Acrylate and methacrylate contact allergy and allergic contact disease: a 13-year review was written by Spencer, Ashley;Gazzani, Paul;Thompson, Donna A.. And the article was included in Contact Dermatitis in 2016.Application of 4074-88-8 This article mentions the following:

Summary : Background : (Meth)acrylates are important causes of contact allergy and allergic contact disease, such as dermatitis and stomatitis, with new and emerging sources resulting in changing clin. presentations. Objectives : To identify the (meth)acrylates that most commonly cause allergic contact disease, highlight their usefulness for screening, and examine their relationship with occupational and clin. data. Methods : A retrospective review of results from patch tests performed between July 2002 and Sept. 2015, in one tertiary Cutaneous Allergy Unit, was performed Results : A series of 28 (meth)acrylates was applied to 475 patients. Results were pos. in 52 cases, with occupational sources being identified in 24. Industrial exposures and acrylic nails were responsible for 13 and 10 cases, resp., with wound dressings being implicated in 7. We found that four individual (meth)acrylates (2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, bisphenol A glycerolate dimethacrylate, and Et acrylate), if used as a screening tool, could have identified 47 (90.4%) of our pos. cases. Conclusions : Our 13-yr experience indicates a changing landscape of (meth)acrylate contact allergy and allergic contact disease, with an observed shift in exposures away from manufacturing and towards acrylic nail sources. Wound dressings are highlighted as emerging sources of sensitization. Larger studies are required to establish the sensitivity and specificity of the four (meth)acrylates proposed for potential screening. In the experiment, the researchers used many compounds, for example, Diethyleneglycoldiacrylate (cas: 4074-88-8Application of 4074-88-8).

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application of 4074-88-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhong, Mingbing et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 1214264-88-6

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (cas: 1214264-88-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C16H20B2N2O2

Copper-Photocatalyzed Hydroboration of Alkynes and Alkenes was written by Zhong, Mingbing;Gagne, Yohann;Hope, Taylor O.;Pannecoucke, Xavier;Frenette, Mathieu;Jubault, Philippe;Poisson, Thomas. And the article was included in Angewandte Chemie, International Edition in 2021.COA of Formula: C16H20B2N2O2 This article mentions the following:

The photocatalytic hydroboration of alkenes and alkynes is reported. The use of newly-designed copper photocatalysts with B2Pin2 permits the formation a boryl radical, which is used for hydroboration of a large panel of alkenes and alkynes. The hydroborated products were isolated in high yields, with excellent diastereoselectivities and a high functional group tolerance under mild conditions. The hydroboration reactions were developed under continuous flow conditions to demonstrate their synthetic utility. The reaction mechanism was studied and suggested an oxidation reaction between an in situ formed borate and the Cu-photocatalyst in its excited state for the boryl radical formation. In the experiment, the researchers used many compounds, for example, 2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (cas: 1214264-88-6COA of Formula: C16H20B2N2O2).

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (cas: 1214264-88-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C16H20B2N2O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Silva, Gislaine C. et al. published their research in Sustainable Chemistry and Pharmacy in 2021 | CAS: 10083-24-6

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C14H12O4

Passion fruit seed extract enriched in piceatannol obtained by microwave-assisted extraction was written by Silva, Gislaine C.;Rodrigues, Rodney A. F.;Bottoli, Carla B. G.. And the article was included in Sustainable Chemistry and Pharmacy in 2021.Electric Literature of C14H12O4 This article mentions the following:

Apart from being food, passion fruit (Passiflora edulis Sims) offers seeds to be used as an oil source, and the residual seed cake from oil extraction contains piceatannol, a mol. that can prevent skin damages. In this work, microwave-assisted extraction (MAE) was evaluated as a technique for the preparation of piceatannol-rich seed cake extracts, and its performance was compared to the conventional Soxhlet extraction MAE and Soxhlet exhibited different selectivities for the seed cake compounds A sequential MAE at 87°C, with 70% EtOH, for 30 min each cycle, provided a fine brown powder with 27.17 ± 0.9μg of piceatannol per mg of the extract, while Soxhlet extraction for 120 min resulted in a dark lumpy extract containing 13.03 ± 0.4μg mg-1. Thus, MAE was shown to be a promising alternative to produce a passion fruit seed extract for cosmetic purposes, adding value to a residue from the passion fruit chain by providing a faster extraction and a more color friendly and easier-to-handle product with higher levels of piceatannol in comparison to the conventional method. In the experiment, the researchers used many compounds, for example, (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6Electric Literature of C14H12O4).

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C14H12O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gong, Yuxin et al. published their research in Angewandte Chemie, International Edition in 2022 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Category: alcohols-buliding-blocks

Nickel-Catalyzed Thermal Redox Functionalization of C(sp3)-H Bonds with Carbon Electrophiles was written by Gong, Yuxin;Su, Lei;Zhu, Zhaodong;Ye, Yang;Gong, Hegui. And the article was included in Angewandte Chemie, International Edition in 2022.Category: alcohols-buliding-blocks This article mentions the following:

A Ni-catalyzed arylation and alkylation of C(sp3)-H bonds with organohalides to forge C(sp3)-C bonds by merging economical Zn and tBuOOtBu (DTBP) as the external reductant and oxidant was reported. The mild and easy-to-operate protocol enabled facile carbofunctionalization of N-/O-α- and cyclohexane C-H bonds, and preparation of a few intermediates of bioactive compounds and drug derivatives Preliminary mechanistic studies implied addition of an alkyl radical to a NiII salt. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Category: alcohols-buliding-blocks).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Song, Geyang et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Category: alcohols-buliding-blocks

General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis was written by Song, Geyang;Nong, Ding-Zhan;Li, Jing-Sheng;Li, Gang;Zhang, Wei;Cao, Rui;Wang, Chao;Xiao, Jianliang;Xue, Dong. And the article was included in Journal of Organic Chemistry in 2022.Category: alcohols-buliding-blocks This article mentions the following:

It was reported that Ni(II)-bipyridine complex catalyzed efficient C-N coupling of aryl chlorides and bromides with various primary and secondary alkyl amines under direct excitation with light. Intramol. C-N coupling was also demonstrated. The feasibility and applicability of the protocol in organic synthesis was attested by more than 200 examples. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Category: alcohols-buliding-blocks).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Debnath, Mamita et al. published their research in Free Radicals and Antioxidants in 2021 | CAS: 10083-24-6

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol

Anti-Alzheimer′s potential of different varieties of Piper betle leaves and molecular docking analyses of metabolites was written by Debnath, Mamita;Das, Susmita;Bhowmick, Shovonlal;Karak, Swagata;Saha, Achintya;De, Bratati. And the article was included in Free Radicals and Antioxidants in 2021.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol This article mentions the following:

Introduction: Acetylcholinesterase inhibitors are used to prevent symptoms of Alzheimer′s disease which is initiated due to oxidative stress. Piper betle L. is a tropical evergreen perennial vine whose leaves are widely consumed as masticator in Asia and has medicinal properties. Objectives: The present study is aimed to investigate acetylcholinesterase inhibitory property of methanolic extracts of different varieties of Piper betle leaves and chemometrically identify different bioactive ingredients in vitro and in silico. Materials and Methods: Methanol extracts of the leaves collected in Feb. and Oct. from eight varieties of P. betle (Chhanchi, Bagerhati, Manikdanga, Kalibangla, Bangla, Ghanagete, Meetha and Haldi) were studied for acetylcholinesterase inhibitory properties. Chem. components were analyzed by Gas Chromatog. -Mass spectrometry and High Performance Thin Layer Chromatog. Active metabolites were identified chemometrically. The activities were proved in vitro and in silico. Results: All the extracts inhibited acetylcholinesterase. Statistical anal. suggested that several phenolic compounds were correlated to anti-cholinesterase activity. Piceatannol, hydroxychavicol, benzene-1,2,4-triol, and 4-methylcatechol are reported here to have such enzyme inhibitory properties. These four small mols. were further subjected to mol. docking anal. to explore their binding mechanism with the acetylcholinesterase enzyme. All the four small mols. are found to interact with the targeted enzyme in similar fashion like the mol. interactions observed for the standard inhibitor, Donepezil, at the active site of acetylcholiesterase. Conclusion: Thus, consumption of P. betle leaves may have a beneficial effect in the prevention and treatment of this neurodegenerative disease. In the experiment, the researchers used many compounds, for example, (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol).

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ma, Guo-zhang et al. published their research in Guangpuxue Yu Guangpu Fenxi in 2010 | CAS: 4074-88-8

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Safety of Diethyleneglycoldiacrylate

Study on the conversion of acrylic C=C double bonds during dark reaction after UV curing using infrared spectroscopy was written by Ma, Guo-zhang;Wu, Jian-bing;Xu, Bing-she. And the article was included in Guangpuxue Yu Guangpu Fenxi in 2010.Safety of Diethyleneglycoldiacrylate This article mentions the following:

IR spectroscopy was used to determine 1 648-1 589 cm-1 characteristic absorption peak area so as to study the conversation of acrylic C=C double bonds after UV curing. The effects of photoinitiators, active diluents and UV curing resins on the conversion of C=C double bonds were also studied. 40%-85% Of C=C double bonds were conversed during dark reaction after 45 s UV curing. Dark reaction will be changed gently after 1.75 h, but 95% conversion of C=C double bonds needed more than 24 h. The rates of polymerization and conversation were affected by photoinitiators, the concentration of photoinitiator, oxygen inhibition, and C=C functional groups of active diluents. The rate of polymerization was affected by the C=C functional groups and types of UV curing resins, but conversation was not. In the experiment, the researchers used many compounds, for example, Diethyleneglycoldiacrylate (cas: 4074-88-8Safety of Diethyleneglycoldiacrylate).

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Safety of Diethyleneglycoldiacrylate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Okano, Masahiko et al. published their research in Bioorganic & Medicinal Chemistry in 2009 | CAS: 155975-19-2

tert-Butyl ((1R,2R)-2-hydroxycyclohexyl)carbamate (cas: 155975-19-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.SDS of cas: 155975-19-2

Discovery and structure-activity relationships of 4-aminoquinazoline derivatives, a novel class of opioid receptor like-1 (ORL1) antagonists was written by Okano, Masahiko;Mito, Jun;Maruyama, Yasufumi;Masuda, Hirofumi;Niwa, Tomoko;Nakagawa, Shin-ichiro;Nakamura, Yoshitaka;Matsuura, Akira. And the article was included in Bioorganic & Medicinal Chemistry in 2009.SDS of cas: 155975-19-2 This article mentions the following:

Synthesis and structure-activity relationship studies of a series of 4-aminoquinazoline derivatives led to the identification of (1 R,2 S)-17, N-[(1R,2S)-2-({2-[(4-chlorophenyl)carbonyl]amino-6-methylquinazolin-4-yl}amino)cyclohexyl]guanidine dihydrochloride, as a highly potent ORL1 antagonist with up to 3000-fold selectivity over the μ, δ, and κ opioid receptors. Mol. modeling clarified the structural factors contributing to the high affinity and selectivity of (1 R,2 S)-17. In the experiment, the researchers used many compounds, for example, tert-Butyl ((1R,2R)-2-hydroxycyclohexyl)carbamate (cas: 155975-19-2SDS of cas: 155975-19-2).

tert-Butyl ((1R,2R)-2-hydroxycyclohexyl)carbamate (cas: 155975-19-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.SDS of cas: 155975-19-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Tomal, Wiktoria et al. published their research in Additive Manufacturing in 2021 | CAS: 4074-88-8

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Recommanded Product: 4074-88-8

Harnessing light to create functional, three-dimensional polymeric materials: multitasking initiation systems as the critical key to success was written by Tomal, Wiktoria;Krok, Dominika;Chachaj-Brekiesz, Anna;Lepcio, Petr;Ortyl, Joanna. And the article was included in Additive Manufacturing in 2021.Recommanded Product: 4074-88-8 This article mentions the following:

Nowadays, the lack of suitable photoinitiators (PI) and photoinitiating systems (PISs) represents the utmost challenge in 3D-VAT printing. High photoinitiating efficiency is needed for example in the presence of nanofillers such as carbon nanotubes (CNTs) which absorb and scatter light. Many prominent PISs contains iodonium salt as an initiator and a second component as a photosensitizer. This study addresses the high demand for innovative PISs with improved photoinitiating efficiency by a complete cycle of research: from the synthesis of new biphenyl derivatives, through their employment as photosensitizers of iodonium salt for light-induced cationic, free-radical, and hybrid polymerization processes, to the representative application in 3D printing processes such as digital light processing (DLP) or laser printing. The ultimate performance of the newly synthesized compounds was tested by preparing 3D-printable photosensitive nanocomposite resins filled with CNTs as a nanoscale filler. Their photopolymerization kinetics as well as the effect of the CNT concentration on the crosslinking were analyzed via real-time FTIR and photo-rheol. The printouts were observed with optical microscopy and SEM. In addition, the key printing parameters were determined, i.e. Ec (critical energy to initiate polymerization) and Dp (penetration depth of curing light). Our results evidence the capability of the synthesized compounds to take part in the photoinitiating systems of complex and demanding 3D printing applications. In the experiment, the researchers used many compounds, for example, Diethyleneglycoldiacrylate (cas: 4074-88-8Recommanded Product: 4074-88-8).

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Recommanded Product: 4074-88-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Fei et al. published their research in Journal of Applied Polymer Science in 2017 | CAS: 4074-88-8

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 4074-88-8

Photopolymer resins for luminescent three-dimensional printing was written by Wang, Fei;Chong, Yiting;Wang, Fu Ke;He, Chaobin. And the article was included in Journal of Applied Polymer Science in 2017.Application of 4074-88-8 This article mentions the following:

Liquid resins based three-dimensional (3D) printing techniques such as stereolithog. (SLA) and digital light processing (DLP) show higher resolution and accuracy than other printing techniques, but their applications were impeded by the limited materials selection and lack of functions. We here reported the preparation of luminescent resins for DLP-based 3D printing. Homogeneous dispersion of the fluorescent dyes was achieved by small acrylate mols. screening, and the cure depth studies was used to optimize both resin composition and printing parameters setting. In addition, we showed that the optical anal. of absorption and emission spectra is an important tool to reduce the complex mutual-interference of the light absorption of dye, photoinitiator and photo-absorber in the printable resin. We also developed the mater batch technique to tune the emitting colors in the whole visible range, together with white emitting. By using the developed resins, different 3D structures with different emitting colors were successfully printed by DLP technique. These results will further widen the applications of the liquid resins-based 3D printing techniques, and these luminescent resins show highly potential applications in education, lighting, UV converters, and so on. © 2017 Wiley Periodicals, Inc.J. Appl. Polym. Sci. 2017, 134, 44988. In the experiment, the researchers used many compounds, for example, Diethyleneglycoldiacrylate (cas: 4074-88-8Application of 4074-88-8).

Diethyleneglycoldiacrylate (cas: 4074-88-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 4074-88-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts