Cas: 148-51-6 | Shtyrlin, N. V. et al. made new progress in 2016

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 COA of Formula: C8H12ClNO2) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

COA of Formula: C8H12ClNO2《Synthesis and biological activity of quaternary phosphonium salts based on 3-hydroxypyridine and 4-deoxypyridoxine》 was published in 2016. The authors were Shtyrlin, N. V.;Vafina, R. M.;Pugachev, M. V.;Khaziev, R. M.;Nikitina, E. V.;Zeldi, M. I.;Iksanova, A. G.;Shtyrlin, Yu. G., and the article was included in《Russian Chemical Bulletin》. The author mentioned the following in the article:

Methods for the synthesis of quaternary phosphonium salts based on 3-hydroxypyridine, e.g., I (HCl salt), and 4-deoxypyridoxine were developed. Some of obtained compounds possess high antibacterial and antitumor activity in vitro. The experimental procedure involved many compounds, such as 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 COA of Formula: C8H12ClNO2) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Min et al. published new experimental results with the assistance of cas: 80-46-6

4-tert-acylphenol (cas:80-46-6) contains hydroxyl group.Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Product Details of 80-46-6

Liu, Min;Chen, Tieqiao;Zhou, Yongbo;Yin, Shuang-Feng published 《Transition metal-free oxidative ortho-acylation of phenols with N-heteroarylmethanes via double C-H activation》 in 2016. The article was appeared in 《Catalysis Science & Technology》. They have made some progress in their research.Product Details of 80-46-6 The article mentions the following:

The direct oxidative acylation of phenols with N-heteroarylmethanes via sp3C-H and sp2C-H double activation was achieved under transition metal-free reaction conditions. This transformation proceeded in a facile I2/DMSO/O2 system regioselectively to produce valuable (2-hydroxyphenyl)arylmethanones from easily available starting materials in moderate to good yields. A plausible mechanism was proposed. And 4-tert-Amylphenol (cas: 80-46-6) was used in the research process.

4-tert-acylphenol (cas:80-46-6) contains hydroxyl group.Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Product Details of 80-46-6

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Learn more about cas: 80-46-6 | Food Additives & Contaminants, Part A 2017

4-tert-acylphenol (cas:80-46-6) contains hydroxyl group. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Synthetic Route of C11H16O

Synthetic Route of C11H16OIn 2017, Domeno, Celia;Aznar, Margarita;Nerin, Cristina;Isella, Francesca;Fedeli, Mauro;Bosetti, Osvaldo published 《Safety by design of printed multilayer materials intended for food packaging》. 《Food Additives & Contaminants, Part A》published the findings. The article contains the following contents:

Printing inks are commonly used in multilayer plastics materials used for food packaging, and compounds present in inks can migrate to the food either by diffusion through the multilayers or because of set-off phenomena. To avoid this problem, the right design of the packaging is crucial. This paper studies the safety by design of multilayer materials. First, the migration from four different multilayers manufactured using polyethylene terephthalate (PET), aluminum (Al) and polyethylene (PE) was determined The structural differences among materials such as the presence of inks or lacquer coatings as well as the differences in layers position allowed the study of a safety-by-design approach. Sixty-nine different compounds were detected and identified; 49 of them were not included in the pos. list of Regulation EU/10/2011 or in Swiss legislation and 15 belong to Cramer class III, which means that they have a theor. high toxicity. Some of the compounds related to ink composition were pyrene, a compound com. used to make dyes and dye precursors and the antioxidant Irganox 1300. The application of external lacquers decreased the concentration of some migrants but also brought the potential for new migrants coming from its composition A final risk assessment of the material allowed evaluating food safety for different food simulants and confirm it. To complete the study, the researchers used 4-tert-Amylphenol (cas: 80-46-6) .

4-tert-acylphenol (cas:80-46-6) contains hydroxyl group. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Synthetic Route of C11H16O

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

McCasland, G. E. et al. published new experimental results with the assistance of cas: 148-51-6

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 HPLC of Formula: 148-51-6) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

McCasland, G. E.;Gottwald, L. Kenneth;Furst, Arthur published 《4,5-Dihalo and 3-amino analogs of pyridoxine. New route to 4-deoxypyridoxine》 in 1961. The article was appeared in 《Journal of Organic Chemistry》. They have made some progress in their research.HPLC of Formula: 148-51-6 The article mentions the following:

Dihalo analogs of pyridoxine, expected to show good alkylating activity, were prepared as potential antitumor agents. SOCl2 (15.0 ml.) was added to 2.06 g. powd. dry pyridoxine hydrochloride (I), the mixture refluxed 1 hr., cooled to 0-25° for several days, filtered, and the crystals washed with C6H6, then with 10 ml. Me2CO, m. 140-90°. Recrystallization from absolute EtOH-C6H6 gave 1.6 g. needles. Dissolution in 25 ml. boiling absolute EtOH and treatment with 25 ml. hot C6H6 gave on cooling 0.9 g. 2-methyl-3-hydroxy-4,5-bis(chloromethyl)pyridine hydrochloride (II), m. 175-90° (decomposition), recrystallized from 10 ml. EtOH to yield 0.7 g. product, m.p. unchanged. I (6.2 g.) treated with 43.5 ml. SOCl2 but kept at 25° only 12 hrs. gave after washing with Me2CO 7.1 g. II, m. 185-95° (decomposition). The use of PCl5 in CCl4, or concentrated HCl, failed to yield pure II. I (21.4 g.) and 200 ml. 8.8M HBr was refluxed 15 min., cooled, filtered, and the solid washed with H2O and Me, CO to give 24.2 g. crystalline 2methyl-3-hydroxy-4,5-bis(bromomethyl)pyridine hydrobromide (III), m. 224-8° (decomposition). III (1.88 g.) was stirred with 0.463 g. NaHCO3 in 20 ml. H2O; the mixture turned pink, then red, and after 100 min. stirring was filtered. The solid was washed with H2O and dried to give 0.6 g. brown-red powder, m. above 325°. The pH of the filtrate was 2, indicating displacement of one or both Br atoms from BrCH2. The solid was insoluble at the boiling point in EtOH, H2O, or 6M HCl. I (2.06 g.) boiled with 67.2 g. 7.6M HI gave 1.3 g.2-methyl-3-hydroxy-4,5-bis(iodomethyl)pyridine hydriodide (IV), m. 120-60° (decomposition). III with NaI in Me2CO failed to give IV. 2-Methyl-3-amino-4,5-bis(hydroxymethyl)pyridine monohydrochloride (V), m. 195-7°, with 8.8M HBr gave 34% 2 methyl-3-amino4,5-bis(bromomethyl)pyridine hydrobromide, m. 220° (decomposition). When 1.0 g. V was boiled with 6.5 ml. 7.6M HI, iodine was liberated and one of the HOCH2 groups was reduced to Me to give 0.59 g. black crystalline mass, which was crystallized from absolute EtOH to yield light yellow 2,4-dimethyl-3-amino-5-(hydroxymethyl)pyridine hydriodide (VI), m. 190-6°, VI (50 mg.) was heated 5 min. with 43 mg. AgCl in 1.0 ml. H2O, the mixturefiltered to remove AgI, the filtrate acidified with 0.2 ml. 12M HCl, the acid solution treated with 23 mg. NaNO2 in 1.0 ml. H2O, and the mixture heated until N effervescence ceased (10-15 min.). The solution was vacuum-distilled to dryness, 0.5 ml. 12M HCl added to the residue, the distillation to dryness repeated, the residue extracted with 2.0 ml. absolute EtOH, cooled, and filtered. The filtrate was treated with Et2O and the separated crystals collected and dried to yield 10 mg. 4-deoxypyridoxine hydrochloride, m. 255° (decomposition). V (1.0 g.), 0.8 g. fused NaOAc, and 20 ml. Ac2O was boiled 20 min., the solvent removed by vacuum distillation, the residue extracted with 15 ml. CHCl3, the CHCl3 extract treated with C, and evaporated to give a brown oil, which was stirred with 2.0 ml. Et2O to yield 0.4 g. solid 2-methyl-3-acetamido-4,5-bis(acetoxymethyl)pyridine (VII), m. 103-1° (C6H6). VII (0.42 g.) in 12 ml. 0.5M NaOH was kept 2 hrs. at 20°, the clear solution adjusted to pH 6-7 by addition of HOAc, the solvent evaporated in vacuo, the residue extracted (Soxhlet) 24 hrs. with Me2CO, and the extract cooled to give 0.1 g. crystalline 2-methyl-3-acetamido-4,5-bis(hydroxymethyl)pyridine, m. 185-6°. And 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) was used in the research process.

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 HPLC of Formula: 148-51-6) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Application of cas: 148-51-6 | Cote, L. et al. published an article in 1952

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Synthetic Route of C8H12ClNO2) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Cote, L.;Oleson, J. J.;Williams, J. H. published 《Nicotinamide inhibitors》. The research results were published in《Proceedings of the Society for Experimental Biology and Medicine》 in 1952.Synthetic Route of C8H12ClNO2 The article conveys some information:

3,5-Pyridinedicarboxylic acid, 2,3-pyrazinedicarboxylic acid, 4-methyl-2,3-pyridinedicarboxylic acid, 2,3-pyrazinedicarboxamide, 3-bromopyridine, 2-methyl-3-amino-4,5-bis(aminomethyl)pyridine, N-thiazolylpyrazinamide, N,N-dimethylpyrazinamide, N-methylpyrazinamide, N-pyrazinylthiourea, N-(hydroxymethyl)pyrazinamide, diethyl N-pyrazinoylaspartate, N-pyrazinoylpiperidine, N-isobutylpyrazinamide, N-(2-pyridyl)pyrazinamide, N-(3-pyridyl)pyrazinamide, N-phenylpyrazinamide, N-hexadecylpyrazinamide, 3-pyrazinoylaminoquinoline, N-(2-hydroxyethyl)-N’-pyrazinoylethylenediamine, 3-hydroxy-6-pyridazinecarboxamide, 2-pyrrolidone-5-carboxamide, 1-thiazolyl-2-pyrrolecarboxamide, desoxypyridoxine, salicylamide, furoic acid, furanilide, pyrazinohydrazide, 1-carbethoxy-4(1,2-dicarbethoxyethyl)piperazine, N-(p-methoxybenzyl)pyrazinamide, pyrazinohydroxamic acid, and Et N-pyrazinoyl-β-alanate had no anti-nicotinamide activity when tested against Lactobacillus arabinosus and none stimulated growth. Pyrazinamide, pyrazinoic acid, and 2-sulfanilamido-5-nitropyridine reversibly inhibited the action of nicotinamide on the organism. Pyrazinamide was not a nicotinamide antagonist for rats or chicks. To complete the study, the researchers used 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Synthetic Route of C8H12ClNO2) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

ACS Medicinal Chemistry Letters | Cas: 110-03-2 was involved in experiment

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) on heteropoly acid catalyzed dehydration yields cyclic ethers via stereospecific intramolecular SN2 mechanism. It reacts with nitriles in concentrated sulfuric acid to yield Δ1-pyrrolines.Related Products of 110-03-2

Rotstein, Benjamin H.;Hooker, Jacob M.;Woo, Jiyeon;Collier, Thomas Lee;Brady, Thomas J.;Liang, Steven H.;Vasdev, Neil published 《Synthesis of [11C]Bexarotene by Cu-Mediated [11C]Carbon Dioxide Fixation and Preliminary PET Imaging》 in 2014. The article was appeared in 《ACS Medicinal Chemistry Letters》. They have made some progress in their research.Related Products of 110-03-2 The article mentions the following:

Bexarotene (Targretin) is a retinoid X receptor (RXR) agonist that has applications for treatment of T cell lymphoma and proposed mechanisms of action in Alzheimer’s disease that have been the subject of recent controversy. Carbon-11 labeled bexarotene ([11C-carbonyl]4-[1-(3,5,5,8,8-pentamethyltetralin-2-yl)ethenyl]benzoic acid) was synthesized using a Cu-mediated cross-coupling reaction employing an arylboronate precursor and [11C]carbon dioxide under atm. pressure in 15 ± 2% uncorrected radiochem. yield (n = 3), based on [11C]CO2. Judicious choice of solvents, catalysts, and additives, as well as precursor concentration and purity of [11C]CO2, enabled the preparation of this 11C-labeled carboxylic acid. Formulated [11C]bexarotene was isolated (>37 mCi) with >99% radiochem. purity in 32 min. Preliminary positron emission tomog.-magnetic resonance imaging revealed rapid brain uptake in nonhuman primate in the first 75 s following i.v. administration of the radiotracer (specific activity >0.3 Ci/μmol at time of injection), followed by slow clearance (Δ = -43%) over 60 min. Modest uptake (SUVmax = 0.8) was observed in whole brain and regions with high RXR expression. To complete the study, the researchers used 2,5-Dimethyl-2,5-hexanediol (cas: 110-03-2) .

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) on heteropoly acid catalyzed dehydration yields cyclic ethers via stereospecific intramolecular SN2 mechanism. It reacts with nitriles in concentrated sulfuric acid to yield Δ1-pyrrolines.Related Products of 110-03-2

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yang, Hyeri et al. published new experimental results with the assistance of cas: 110-03-2

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) was used in the synthesis of six- and seven-membered heterocyclic boron compounds containing intramolecular N-B bond.SDS of cas: 110-03-2

Yang, Hyeri;Kim, Da-eun;Jang, Won-Hee;An, Susun;Cho, Sun-A.;Jung, Mi-Sook;Lee, Ji Eun;Yeo, Kyung-Wook;Koh, Sang Bum;Jeong, Tae-Cheon;Kang, Mi-Jeong;Chun, Young-Jin;Lee, Su-Hyon;Lim, Kyung-Min;Bae, SeungJin published 《Prevalidation trial for a novel in vitro eye irritation test using the reconstructed human cornea-like epithelial model, MCTT HCE》 in 2017. The article was appeared in 《Toxicology In Vitro》. They have made some progress in their research.SDS of cas: 110-03-2 The article mentions the following:

Here, the authors report the results of a prevalidation trial for an in vitro eye irritation test (EIT) using the reconstructed human cornea-like epithelium, MCTT HCE. The optimal cutoff to determine irritation in the prediction model was established at 35% with the receiver operation characteristics(ROC) curve for 126 substances. Within-lab(WL) and between-lab(BL) reproducibility was tested for 20 reference substances by 3 participating laboratories Viability data described by mean or ± 1/2 difference between duplicate wells, and scatter plots, demonstrated the WL/BL consistency. WL/BL concordance with the binary decision, whether non-irritant or irritant was estimated to be 85-95% and 95%, resp. WL/BL reproducibility of viability data was further supported by a strong correlation(ICC, r >0.9). WL/BL agreement of binary decisions was also examined by Fleiss’ Kappa statistics, which showed a strong level of agreement (>0.78), nevertheless weaker than the reproducibility of the viability. The EIT with MCTT HCE exhibited a sensitivity of 82.2% (60/73), a specificity of 81.1% (43/53), and an accuracy of 81.8% (103/126) for 126 reference substances (for liquids; a sensitivity of 100% (47/47), a specificity of 70.6% (24/34), and an accuracy of 87.7% (71/81), and for solids, a sensitivity of 50% (13/26), a specificity of 100% (19/19), and an accuracy of 71.1% (32/45)), suggesting that the accuracy is satisfactory but the sensitivity needs improvement, which shall be addressed through correcting the poor sensitivity for solid substances in future full validation trials. And 2,5-Dimethyl-2,5-hexanediol (cas: 110-03-2) was used in the research process.

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) was used in the synthesis of six- and seven-membered heterocyclic boron compounds containing intramolecular N-B bond.SDS of cas: 110-03-2

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hintz, Heather A. et al. published new progress in experiments with the help of cas: 110-03-2

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) is used as an intermediate in the preparation of 2.5-Dimethyl-2.5-bis(tertbutyl-peroxy)hexane. It is also used in the synthesis of six- and seven-membered heterocyclic boron compounds.Name: 2,5-Dimethyl-2,5-hexanediol

Name: 2,5-Dimethyl-2,5-hexanediol《The synthesis of lactone-bridged 1,3,5-triphenylbenzene derivatives as pi-expanded coumarin triskelions》 was published in 2017. The authors were Hintz, Heather A.;Sortedahl, Nicholas J.;Meyer, Samantha M.;Decato, Daniel A.;Dahl, Bart J., and the article was included in《Tetrahedron Letters》. The author mentioned the following in the article:

Two triply lactone-bridged 1,3,5-triphenylbenzene derivatives I and II with solubilizing moieties were synthesized in five and six steps from com. available starting materials. Compounds containing the 1,3,5-triphenylbenzene core with two atom bridges are relatively unknown. This new class of pi-expanded coumarins contain triskelion architectures and X-ray crystallog. studies of one of the triskelions indicated that the 1,3,5-triphenylbenzene core adopted a near-planar geometry. This is the only known example of a two atom-bridged 1,3,5-triphenylbenzene derivative to adopted a planar structure.2,5-Dimethyl-2,5-hexanediol (cas: 110-03-2) were involved in the experimental procedure.

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) is used as an intermediate in the preparation of 2.5-Dimethyl-2.5-bis(tertbutyl-peroxy)hexane. It is also used in the synthesis of six- and seven-membered heterocyclic boron compounds.Name: 2,5-Dimethyl-2,5-hexanediol

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cas: 148-51-6 | Meldrum, B. S.published an article in 1971

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Synthetic Route of C8H12ClNO2) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Meldrum, B. S. published 《Convulsive effects of 4-deoxypyridoxine in photosensitive baboons》 in 1971. The article was appeared in 《British Journal of Pharmacology》. They have made some progress in their research.Synthetic Route of C8H12ClNO2 The article mentions the following:

In baboons (Papio papio) which when exposed to intermittent light stimulation (ILS) showed myoclonus and electroencephalographic signs of epilepsy, deoxypyridoxine-HCl (I) (10-20 mg/kg, i.v.) did not modify the responses, while 15 min-2 hr after 40-60 mg I/kg, the myoclonic responses to ILS were enhanced. Animals normally giving transient myoclonic responses showed rhythmic myoclonus of the eyelids and face continuing for several sec after the end of ILS. In 4 out of 6 baboons after 80-100 mg I/kg this self-sustaining myoclonus developed into a full tonic-clonic seizure at least once 45-180 min after the drug injection. The injection of 105-150 mg I/kg not only enhanced myoclonic responses to ILS but also led to the appearance after 46-67 min of spontaneous seizures. These recurred every 10-15 min, were often only partial, and commonly originated in, and were sometimes confined to, the occipital cortex. An excess of pyridoxine, given i.v. a few minutes before and after the I, blocked both the enhancement of photosensitivity produced by 100 mg I/kg and spontaneous seizures produced by 150 mg/kg. I may produce these convulsive effects by interfering with the formation or action of pyridoxal phosphate. And 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) was used in the research process.

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Synthetic Route of C8H12ClNO2) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cas: 110-03-2 | Das, Mitali et al. made new progress in 2016

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) is used as an intermediate in the preparation of 2.5-Dimethyl-2.5-bis(tertbutyl-peroxy)hexane. It is also used in the synthesis of six- and seven-membered heterocyclic boron compounds.Category: alcohols-buliding-blocks

Das, Mitali;Shu, Chi-Min published 《A green approach towards adoption of chemical reaction model on 2,5-dimethyl-2,5-di-(tert-butylperoxy)hexane decomposition by differential isoconversional kinetic analysis》 in 2016. The article was appeared in 《Journal of Hazardous Materials》. They have made some progress in their research.Category: alcohols-buliding-blocks The article mentions the following:

This study studied the thermal degradation products of 2,5-dimethyl-2,5-di-(tert-butylperoxy) hexane (DBPH), by TG/GC/MS to identify runaway reaction and thermal safety parameters. It also included the determination of time to maximum rate under adiabatic conditions (TMRad) and self-accelerating decomposition temperature obtained through Advanced Kinetics and Technol. Solutions The apparent activation energy (Ea) was calculated from differential isoconversional kinetic anal. method using DSC experiments The Ea value obtained by Friedman anal. is at 118.0-149.0 kJ mol-1. The TMRad was 24.0 h with an apparent onset temperature of 82.4°. This study also established an efficient benchmark for a thermal hazard assessment of DBPH that can be applied to assure safer storage conditions.2,5-Dimethyl-2,5-hexanediol (cas: 110-03-2) were involved in the experimental procedure.

2,5-Dimethyl-2,5-hexanediol(cas:110-03-2) is used as an intermediate in the preparation of 2.5-Dimethyl-2.5-bis(tertbutyl-peroxy)hexane. It is also used in the synthesis of six- and seven-membered heterocyclic boron compounds.Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts