Juszynska-Galazka, Ewa et al. published their research in Phase Transitions in 2018 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 2968-93-6

Vibrational dynamics of glass forming: 2-phenylbutan-1-ol (BEP), 2-(trifluoromethyl)phenethyl alcohol (2TFMP) and 4-(trifluoromethyl)phenethyl alcohol (4TFMP) in their thermodynamic phases was written by Juszynska-Galazka, Ewa;Zajac, Wojciech;Saito, Kazuya;Yamamura, Yasuhisa;Jurus, Natalia. And the article was included in Phase Transitions in 2018.Reference of 2968-93-6 This article mentions the following:

The complex polymorphism and vibrational dynamics of three glass-forming single-phenyl-ring alcs. (with and without fluorine atoms) have been studied by complementary methods. Glass of isotropic liquid phase and cold crystallization of metastable supercooled liquid state were detected. Temperature investigations of vibrational motions show important role of hydrogen bonds in interactions between mols. Theor. calculations for isolated mol., as well as dimer- and tetramer-type aggregates of non-covalently bound mols., allow for a good description of exptl. spectra. Intermol. interactions of mols. with ortho and para positions of CF3 group in Ph ring have a similar influence on the spectra observed In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Reference of 2968-93-6).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 2968-93-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Carmona, Daniel et al. published their research in Dalton Transactions in 2014 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Recommanded Product: 6-Methyl-2-pyridinemethanol

Hydroxymethylpyridine containing half-sandwich complexes of Rh(III), Ir(III) or Ru(II) was written by Carmona, Daniel;Lamata, Pilar;Sanchez, Antonio;Pardo, Pilar;Rodriguez, Ricardo;Ramirez, Paola;Lahoz, Fernando J.;Garcia-Orduna, Pilar;Oro, Luis A.. And the article was included in Dalton Transactions in 2014.Recommanded Product: 6-Methyl-2-pyridinemethanol This article mentions the following:

Complexes of the formula [(ηn-ring)M(NOH){(R)-P1}][SbF6]2 ((ηn-ring)M = (η5-C5Me5)Rh, (η5-C5Me5)Ir, (η6-p-MeC6H4iPr)Ru; NOH = hydroxymethylpyridine ligand; {(R)-P1} = (R)-monophos) have been prepared from the corresponding dimers [{(ηn-ring)MCl}2(μ-Cl)2] through routes involving [(η5-C5Me5)RhCl2{(R)-P1}] or [(ηn-ring)MCl(NOH)][SbF6] intermediates. The new complexes have been characterized by anal. and spectroscopic means, including the determination of the crystal structures of [(η5-C5Me5)IrCl2{(R)-P1}] (1b), [(η6-p-MeC6H4iPr)RuCl(NOH-1)][SbF6] (2c), [(η5-C5Me5)IrCl{(R)-NOH-2}][SbF6] ((R)-3b), [(η5-C5Me5)Rh(NOH-1){(R)-P1}][SbF6]2 (4a) and [(η6-p-MeC6H4iPr)Ru{(R)-NOH-2}{(S)-P1}][SbF6]2 ((R)-5c’) by x-ray diffractometric methods. From NMR and x-ray data, the absolute configuration of the new chiral compounds was established. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0Recommanded Product: 6-Methyl-2-pyridinemethanol).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Recommanded Product: 6-Methyl-2-pyridinemethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xie, Jin et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2017 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H9F3O

Antiproliferative activity and SARs of caffeic acid esters with mono-substituted phenylethanols moiety was written by Xie, Jin;Yang, Fengzhi;Zhang, Man;Lam, Celine;Qiao, Yixue;Xiao, Jia;Zhang, Dongdong;Ge, Yuxuan;Fu, Lei;Xie, Dongsheng. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2017.COA of Formula: C9H9F3O This article mentions the following:

A series of caffeic acid phenylethyl ester (CAPE) derivatives with mono-substituted phenylethanols moiety were synthesized and evaluated by MTT assay on growth of 4 human cancer cell lines (Hela, DU-145, MCF-7 and ECA-109). The substituent effects on the antiproliferative activity were systematically investigated for the first time. It was found that electron-donating and hydrophobic substituents at 2′-position of phenylethanol moiety could significantly enhance CAPE’s antiproliferative activity. 2′-Propoxyl derivative, as a novel caffeic acid ester, exhibited exquisite potency (IC50 = 0.4 ± 0.02 & 0.6 ± 0.03 μM against Hela and DU-145 resp.). In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6COA of Formula: C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jin, Yuxi et al. published their research in Food Research International in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.COA of Formula: C8H16O

Inhibition of cholesterol biosynthesis promotes the production of 1-octen-3-ol through mevalonic acid was written by Jin, Yuxi;Yuan, Xiaoya;Liu, Jianfeng;Wen, Jie;Cui, Huanxian;Zhao, Guiping. And the article was included in Food Research International in 2022.COA of Formula: C8H16O This article mentions the following:

1-Octen-3-ol makes an important contribution to meat flavor. The goal of this study was to identify the metabolic pathways of 1-octen-3-ol formation in meat. We found 218 metabolites associated with 1-octen-3-ol content in 20 samples of chicken meat, including mevalonic acid (pos. correlation), corticosterone (neg. correlation), and other lipids and lipid-like mols. Among these 218 metabolites, 17 metabolites were differentially expressed in different 1-octen-3-ol content groups. Similarly, 37 genes were not only differentially expressed, but were significantly correlated with 1-octen-3-ol. The regulation of HSP90AA1, PTPN9, and other genes converted more mevalonic acid to 1-octen-3-ol. Meanwhile, mevalonic acid, a key material in the synthesis of cholesterol, caused a decrease in corticosterone content, affecting ZNF414 and KLF15 gene expression. These findings reveal the effect of cholesterol on 1-octen-3-ol content, as well as a pos. regulation of mevalonic acid on the production of 1-octen-3-ol in chicken meat. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4COA of Formula: C8H16O).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.COA of Formula: C8H16O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gao, Feng et al. published their research in Macromolecules (Washington, DC, United States) in 2022 | CAS: 2216-51-5

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C10H20O

Three Different Types of Asymmetric Polymerization of Aryl Isocyanides by Using Simple Rare-Earth Metal Trialkyl Precursors was written by Gao, Feng;Chen, Jupeng;Cao, Qingbin;Li, Qiaozhen;Zheng, Jie;Li, Xiaofang. And the article was included in Macromolecules (Washington, DC, United States) in 2022.Synthetic Route of C10H20O This article mentions the following:

Three different types of asym. polymerization of aryl isocyanides containing helix-sense-selective polymerization of achiral aryl isocyanides with D/L-lactide as the chiral additive, asym. induced polymerization of chiral aryl isocyanides as well as helix-sense-selective copolymerization of chiral and achiral aryl isocyanides with chiral amplification have successfully been implemented by using two kinds of achiral monocation [LnR2(THF)n]+ or dication species [LnR(THF)n]2+in situ generated from two series of simple rare-earth metal trialkyl precursors (LnR3(THF)n, Ln = Sc, Lu, Y; R = -CH2SiMe3, -o-CH2C6H4NMe2; n = 0, 2). As a result, various optically active poly(aryl isocyanide)s having one-handed helical conformations and/or aggregation-induced emission (AIE) nature are prepared A possible coordination mechanism is also proposed. Such a catalytic system affords a new design concept of simple, efficient, and superior rare-earth metal catalysts for asym. polymerization of functional isocyanides. In the experiment, the researchers used many compounds, for example, (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5Synthetic Route of C10H20O).

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C10H20O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yu, Jing et al. published their research in Food Chemistry in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of Oct-1-en-3-ol

Halophilic bacteria as starter cultures: A new strategy to accelerate fermentation and enhance flavor of shrimp paste was written by Yu, Jing;Lu, Kuan;Zi, Jiwei;Yang, Xihong;Zheng, Zuoxing;Xie, Wancui. And the article was included in Food Chemistry in 2022.Application In Synthesis of Oct-1-en-3-ol This article mentions the following:

Retaining the traditional flavor while shortening the fermentation cycle is the current research focus for shrimp paste fermentation technol. The present study investigated the effect of combined use of halophilic bacteria as starters on the sensory and flavor characteristics of rapidly fermented shrimp paste. Sensory evaluation indicated that the starter-inoculated samples had high texture, appearance, and overall quality scores. Headspace gas chromatog.-ion mobility spectrometry/mass spectrometry (HS-GC-IMS/MS) identified 95 volatile compounds, the fingerprint profiles of the starter-inoculated samples were similar to those of the traditional sample. Notably, the content of benzaldehyde, phenylethylaldehyde, and 3-methylbutyraldehyde increased significantly in the starter-inoculated samples (p < 0.05), which may provide an intense malt, caramel, and pleasant odor. Although the content of certain flavor substances in the starter-inoculated samples was lower than those of traditional sample, the use significantly reduced the fermentation time and mimicked the flavor profile of traditional shrimp paste to some extent. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Application In Synthesis of Oct-1-en-3-ol).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of Oct-1-en-3-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

He, Li et al. published their research in Innovative Food Science & Emerging Technologies in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 111-46-6

Isolation and identification of Lactobacillus and yeast species and their effect on the quality of fermented rice cakes was written by He, Li;Chen, Yanhua;Zhang, Haitian;Wang, Hui;Chen, Shujuan;Liu, Shuliang;Liu, Aiping;Li, Qin;Ao, Xiaolin;Liu, Yaowen. And the article was included in Innovative Food Science & Emerging Technologies in 2022.Related Products of 111-46-6 This article mentions the following:

In this study, microbes were isolated from the rice slurry of a fermented rice cake to obtain lactic acid bacteria and yeast species. These species were identified using microbial physiol. and gene sequence analyses. As the growth of the lactic acid bacterial strain R-2b and the yeast J-3a strains were found to be the best, a composite starter comprising these microbes was used for the preparation of fermented rice cakes. Based on single factor and orthogonal experiments, when the proportion of Lactobacillus plantarum, Saccharomyces cerevisiae, and Candida humilis was 1:3:6, the optimal fermentation conditions were addition of sugar and starter amounts of 20% and 6%, resp., a fermentation temperature of 32°C, and fermentation time of 8 h. The fermented rice cake with this optimum ratio had the most abundant volatile components and qualified physicochem. and microbial indexes. Addnl., the overall quality was better than that of com. available products. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Related Products of 111-46-6).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 111-46-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiao, Keke et al. published their research in Chemosphere in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Product Details of 111-46-6

Humic substances measurement in sludge dissolved organic matter: A critical assessment of current methods was written by Xiao, Keke;Horn, Harald;Abbt-Braun, Gudrun. And the article was included in Chemosphere in 2022.Product Details of 111-46-6 This article mentions the following:

The role of humic substances (HS) during sludge treatment has been the focus in recent years. Quantification of HS in sludge dissolved organic matter (DOM) and the chem. and structural characterization of HS data are the prerequisite for understanding their role during different sludge treatment processes. Currently, a number of published articles inadequately acknowledge fundamental principles of anal. methods both in terms of exptl. approach and data anal. Therefore, a more comprehensive and detailed description of the exptl. methods and the data anal. are needed. In this study, the current used methods for HS quantification in DOM of sludge had been tested for different calibration and sludge DOM samples. The results indicated that the current methods showed overestimated and contradictory results for HS quantification in sludge DOM. To be specific, using the modified Lowry method, different values were obtained depending on the humic acids used for calibration, and false neg. results were observed for some sludge samples. By using the relative amount of HS (based on dissolved organic carbon (DOC)) to total sludge DOM (based on DOC), variations among the results of different anal. methods for the same sample were high. According to the calculated Bray-Curtis dissimilarity indexes, the results for HS quantification obtained by three-dimensional excitation emission matrix (3D-EEM), either with spectra anal. methods by peak picking, fluorescence region integration (both region volume and area integration), or PARAllel FACtor anal. showed higher degrees of dissimilarity to those quantified by size exclusion liquid chromatog. or XAD-8 method. The selection of fluorescence regions for HS seemed to be the determining factor for overestimation obtained by the 3D-EEM technique. In future work, strategies, like a consistent terminol. of HS, the use of an internal standard sample, and the related standardized operation for HS quantification in sludge DOM need to be established. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Product Details of 111-46-6).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Product Details of 111-46-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Menicucci, Felicia et al. published their research in International Biodeterioration & Biodegradation in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.HPLC of Formula: 499-75-2

Effects of trapped-into-solids volatile organic compounds on paper biodeteriogens was written by Menicucci, Felicia;Palagano, Eleonora;Michelozzi, Marco;Cencetti, Gabriele;Raio, Aida;Bacchi, Alessia;Mazzeo, Paolo P.;Cuzman, Oana A.;Sidoti, Alessandro;Guarino, Salvatore;Basile, Sara;Riccobono, Ornella;Peri, Ezio;Vizza, Francesco;Ienco, Andrea. And the article was included in International Biodeterioration & Biodegradation in 2022.HPLC of Formula: 499-75-2 This article mentions the following:

Paper items from historical archives and libraries are frequently colonized by biodeteriogens, the management of which is a major concern. Essential oil Volatile Organic Compounds (VOCs) of thymol, carvacrol and eugenol, with high levels of antimicrobial and insect repellent activity, were stabilized within crystalline networks of β-cyclodextrins and phenazine-based cocrystals, as a new tool for the control of paper-degrading agents. These formulations were obtained via solvent-free methodologies and resulted as easy handling powders, suitable for the treatment of paper items by indirect contact. Their antimicrobial activity was evaluated on the following species isolated from a book depository at Forte Belvedere (Florence, IT): Alternaria alternata, Aspergillus sp., Cladosporium sp., Trichoderma orientale, Metschnikowia sp., and Bacillus sp. Both formulates displayed a significant antimicrobial activity in vitro, with cocrystals showing higher efficacy than β-cyclodextrins. The formulates were also tested against the pest Lasioderma serricorne, towards which the cocrystals entrapping carvacrol and thymol exhibited repellent activity. Overall, the phenazine-carvacrol cocrystal was the best-performing formulate, also giving favorable outcomes in terms of antifungal activity in an on-paper in vitro experiment designed to reproduce on a small-scale the critical conditions of an infested archive. These promising results pave the way towards further experimentations of VOC-based solid formulates, to shed light on such products applicability for the preservation of paper items. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2HPLC of Formula: 499-75-2).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.HPLC of Formula: 499-75-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Zeye et al. published their research in Science China: Chemistry in 2021 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C9H9F3O

Highly efficient NHC-iridium-catalyzed β-methylation of alcohols with methanol at low catalyst loadings was written by Lu, Zeye;Zheng, Qingshu;Zeng, Guangkuo;Kuang, Yunyan;Clark, James H.;Tu, Tao. And the article was included in Science China: Chemistry in 2021.Formula: C9H9F3O This article mentions the following:

A highly efficient β-methylation of primary and secondary alcs. with methanol was achieved by using bis-N-heterocyclic carbene iridium (bis-NHC-Ir) complexes. Broad substrate scope and up to quant. yields were achieved at low catalyst loadings with only hydrogen and water as byproducts. The protocol was readily extended to the β-alkylation of alcs. with several primary alcs. Control experiments, along with DFT calculations and crystallog. studies, revealed that the ligand effect was critical to their excellent catalytic performance, shedded light on more challenging Guerbet reactions with simple alcs. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Formula: C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts