Desalbres, L. et al. published their research in Rev. ind. min茅rale in 1956 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Structure and activity of the constituents of the flotation pine oils was written by Desalbres, L.. And the article was included in Rev. ind. min茅rale in 1956.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

Pine oil is widely used in flotation processes. The foaming activity of a pine oil is bound to the presence of terpenic alcs. in C10H18O. The average chem. analysis of pine oils gives: tertiary alcs.:terpineols 60-70%, secondary alcs.:borneol-fenchol 15-20%, hydrocarbons 10-20%. The structural diagrams of these and their subgroups are given. The tertiary hydroxyl group is the most active; then the secondary groups and ether oxides; the ethylenic hydrocarbons have no activity. No exact relation exists between the solubility and the foaming power within a given group. At 15掳, 2.1 g. of terpineol is needed to saturate 1 g. of water, 1 g. of menthanol, 0.44 g. of borneol; menthanol foams the most. The surface activity of a mol. has no relation to its foaming activity: a saturated menthanol sol at 15掳 has a surface tension of 38 dynes/cm., a saturated terpineol sol of 39 dynes/cm. For the same concentration, the menthanol gives a much greater volume of foam. It is the same with the hydrocarbons: saturated cymene sol has a surface tension of 52, of terpinene 51 dynes/cm., but the cymene is nonfoaming while terpinene is. The foaming activity of a mol. seems to be connected therefore to an assembly of characters of a functional and structural order. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gungor, Eda et al. published their research in Macromolecules (Washington, DC, United States) in 2016 | CAS: 60463-12-9

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 60463-12-9

Photocleavage of Covalently Immobilized Amphiphilic Block Copolymer: From Bilayer to Monolayer was written by Gungor, Eda;Armani, Andrea M.. And the article was included in Macromolecules (Washington, DC, United States) in 2016.Reference of 60463-12-9 This article mentions the following:

We developed and verified a method to create a photocleavable smart surface. Using the grafting to approach, we covalently attached an intelligently designed tailor-made diblock copolymer to a silicon wafer. The photocleavable moiety, o-nitrobenzyl (ONB) ester, was integrated into the copolymer at the junction point between the hydrophilic poly(ethylene oxide) (PEO) and the hydrophobic polystyrene (PS) chains. The well-defined azide bearing amphiphilic block copolymer was synthesized via a general stepwise strategy that combines atom transfer radical polymerization (ATRP) and copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC), ending with azidation. The azide end-functionalized copolymer chains were covalently bound to the alkyne-immobilized silicon wafer by CuAAC. The smart surface was exposed to UV irradiation, resulting in photocleavage of the grafted ONB linker. As a result of the photocleavage and subsequent removal of the o-nitrosobenzaldehyde bearing PEO, the PS layer remained on the surface. To confirm the behavior, film thickness and wettability changes were investigated before and after UV irradiation using AFM and contact angle measurements. Integration of photocleavable polymers through covalent grafting to solid surfaces contributes responsiveness to such materials that can find a wide array of applications in advanced devices. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Reference of 60463-12-9).

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 60463-12-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Aspinall, G. O. et al. published their research in Journal of the Chemical Society in 1958 | CAS: 10030-85-0

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 10030-85-0

Gum ghatti (Indian gum). III. Neutral oligosaccharides formed on partial acid hydrolysis of the gum was written by Aspinall, G. O.;Auret, Barbara J.;Hirst, E. L.. And the article was included in Journal of the Chemical Society in 1958.Related Products of 10030-85-0 This article mentions the following:

Gum ghatti (100 g.) in 1.95 l. H2O was heated to 100掳, 50 ml. 4N H2SO4 added, and the solution boiled 1.5 hrs. The cooled solution was neutralized with Ba(OH)2 and BaCO3, filtered, concentrated to 400 ml., and poured into 2 l. EtOH. The precipitated degraded polysaccharide A (I) (50 g.) was separated and the liquor concentrated to 200 ml., passed through Amberlite IR-120 (H) and IR-4B (OH), and conced. to 35 g. sirup B (II). I was hydrolyzed again to give a further 15 g. II. II (50 g.) in 200 ml. H2O was chromatographed on 800 g. 1:1 C-Celite. Elution with H2O gave 36 g. monosaccharides [arabinose (III), galactose (IV), xylose, and rhamnose (trace)] and a small fraction (0.8 g.) which gave L-rhamnose hydrate, m. 90-1掳 [伪]D -2掳. Oligosaccharides were eluted with EtOHH2O. Chromatography of fraction 1 (0.23 g.) showed 6-(O-尾-galactopyranosyl)galactose (V), 3-(O-尾-arabopyranosyl)arabinose (VI) and a pentose-containing disaccharide. Hydrolysis of the mixture gave III and IV. Fraction 2 (1.1 g.) was chromatographed on cellulose with 10:4:3 EtOAc-C5H5N-H2O to give 0.15 g. of mixture III, IV and arabinose-containing disaccharides and 0.56 g. sirup B, [伪]D 31掳. Methylation of 200 mg. II followed by hydrolysis and chromatography on cellulose with 7:3 pert. ether-BuOH gave 40 mg. 2,3,4,6-tetra-O-methyl-D-galactose (VII) (aniline derivative, m. 198掳), 35 mg. mixture of VII and 2,3,4-tri-O-methylgalactose (VIII), and 39 mg. VIII (aniline derivative, m. 159-60掳). Fraction 3 (205 mg.) chromatographed on cellulose gave 65 mg. mixture III, IV and three III-containing disaccharides, 10 mg. VI, 30 mg. disaccharide, [伪]D 125掳, which hydrolyzed to IV and glucose, and 50 mg. V. Fraction 4 gave 155 mg. sugar (IX), m. 202-3掳 [伪]D 80掳. Methylation of 100 mg. IX followed by hydrolysis and chromatography on cellulose gave 28 mg. VII with a trace of 2,5-di-O-methylarabinose (X), 5 mg. X, 10 mg. tri-O-methylgalactose, 2,4-di-O-methylarabinose (XI), and 20 mg. XI, [伪]D 120掳. Fraction 5 (80 mg.) separated on cellulose gave 25 mg. mixture of III-containing disaccharides, 5 mg. 3-(O-尾-galactopyranosyl)arabinose (XII), 25 mg. 3-(O-尾-D-galactopyranosyl)-D-galactose, m. 151-2掳, [伪]D 69掳, and 3 mg. V. Chromatography of 0.58 g. fraction 6 (0.83 g.) on cellulose gave 0.45 g. trisaccharide (XIII), [伪]D 20掳, and traces of V and monosaccharides. Partial and complete hydrolysis of XIII gave V and IV, resp. Methylation of 200 mg. XIII followed by hydrolysis gave 36 mg. VII and 80 mg. VIII. Fraction 7 gave 265 mg. trisaccharide (XIV), m. 191掳, [伪]D 39掳. Partial hydrolysis of XIV gave III, IV, XII, and V. Methylation of 200 mg. XIV followed by hydrolysis gave 47 mg. VII, 5 mg. X (2,5-di-O-methyl-L-arabonamide, m. 122掳), 40 mg. VIII, and 32 mg. XI. Fraction 8 contained 0.47 g. sugar, [伪]D 14掳, which on partial hydrolysis gave V. Fraction 9 gave 100 mg. tetrasaccharide, m. 171掳, [伪]D 26掳, which on partial hydrolysis gave III, IV, XII, and V. Fraction 10 gave a sugar, m. 177-9掳 (decomposition), [伪]D 19掳, which on partial hydrolysis gave III, IV, XII, and V. Thus, the first 3 members of the series O-(尾-D-galactopyranosyl)-[(1 鈫?6)-O-(尾-D-galactopyranosyl)]n-(1 鈫?6)-D-galactose (n = 0, 1, 2) and the first 4 members of the series O-(尾-D-galactopyranosyl)-[(1 鈫?6)-O-(尾-D-galactopyranosyl)]n-(1 鈫?3)-L-arabinose (n = 0, 1, 2, 3) have been characterized. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Related Products of 10030-85-0).

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 10030-85-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Javaherian, Mohammad et al. published their research in Journal of the Iranian Chemical Society in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 873-76-7

Nano-silica melamine trisulfonic acid as an efficient and reusable heterogeneous catalyst in esterification reactions was written by Javaherian, Mohammad;Latifi, Saeideh;Heidarizadeh, Fariba. And the article was included in Journal of the Iranian Chemical Society in 2022.Product Details of 873-76-7 This article mentions the following:

The use of nano-silica melamine trisulfonic acid as a reusable heterogeneous solid acid catalyst in the esterification reaction of carboxylic acids and alcs. is reported. The reaction conditions were optimized by testing temperature, each component of catalyst, feedstock ratios as well as load of catalyst. The synthesized catalyst was characterized by X-ray diffraction, SEM, Fourier transform IR spectroscopy, and thermogravimetric anal. techniques. The results showed that nano-silica melamine trisulfonic acid was an efficient dehydrating agent in the condensing reactions between different kinds of aliphatic and aromatic carboxylic acids and alcs. The method was simple, rapid, straightforward, catalyst reusability, and holds potential for further application in acid-catalyzed organic synthesis and industrial requirements. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Product Details of 873-76-7).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 873-76-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Thurmond, John et al. published their research in Journal of Medicinal Chemistry in 2008 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.SDS of cas: 120121-01-9

Synthesis and Biological Evaluation of Novel 2,4-Diaminoquinazoline Derivatives as SMN2 Promoter Activators for the Potential Treatment of Spinal Muscular Atrophy was written by Thurmond, John;Butchbach, Matthew E. R.;Palomo, Marty;Pease, Brian;Rao, Munagala;Bedell, Louis;Keyvan, Monica;Pai, Grace;Mishra, Rama;Haraldsson, Magnus;Andresson, Thorkell;Bragason, Gisli;Thosteinsdottir, Margret;Bjornsson, Jon Mar;Coovert, Daniel D.;Burghes, Arthur H. M.;Gurney, Mark E.;Singh, Jasbir. And the article was included in Journal of Medicinal Chemistry in 2008.SDS of cas: 120121-01-9 This article mentions the following:

Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord that is caused by deletion and/or mutation of the survival motor neuron gene (SMN1). Adjacent to SMN1 are a variable number of copies of the SMN2 gene. The two genes essentially differ by a single nucleotide, which causes the majority of the RNA transcripts from SMN2 to lack exon 7. Although both SMN1 and SMN2 encode the same Smn protein amino acid sequence, the loss of SMN1 and incorrect splicing of SMN2 have the consequence that Smn protein levels are insufficient for the survival of motor neurons. The therapeutic goal of our medicinal chem. effort was to identify small-mol. activators of the SMN2 promoter that, by up-regulating gene transcription, would produce greater quantities of full-length Smn protein. Our initial medicinal chem. effort explored a series of C5 substituted benzyl ether based 2,4-diaminoquinazolines that were found to be potent activators of the SMN2 promoter; however, inhibition of DHFR was shown to be an off-target activity that was linked to ATP depletion. A structure-guided approach was used to overcome DHFR inhibition while retaining SMN2 promoter activation. A lead compound, the [(fluorobenzyl)piperidinylmethoxy]quinazolinediamine I, was identified as having high potency and 2.3-fold induction of the SMN2 promoter. I possessed desirable pharmaceutical properties, including excellent brain exposure and long brain half-life following oral dosing to mice. I up-regulated expression of the mouse SMN gene in NSC-34 cells, a mouse motor neuron hybrid cell line. In type 1 SMA patient fibroblasts, I induced Smn in a dose-dependent manner when analyzed by immunoblotting and increased the number of intranuclear particles called gems. The compound restored gems numbers in type I SMA patient fibroblasts to levels near unaffected genetic carriers of SMA. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9SDS of cas: 120121-01-9).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.SDS of cas: 120121-01-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

de Farias Marques, Antonia Dayane Jenyffer et al. published their research in Food Chemistry in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Synthetic Route of C8H16O

Oxidative stability of chicken burgers using organic coffee husk extract was written by de Farias Marques, Antonia Dayane Jenyffer;de Lima Tavares, Jerffeson;de Carvalho, Leila Moreira;Leite Abreu, Thaianaly;Alves Pereira, Deyse;Moreira Fernandes Santos, Miriane;Suely Madruga, Marta;de Medeiros, Lorena Lucena;Kenia Alencar Bezerra, Taliana. And the article was included in Food Chemistry in 2022.Synthetic Route of C8H16O This article mentions the following:

The antioxidant capacity of organic coffee husk extract (Coffee arabica L.) added to chicken burgers was evaluated. Two formulations were prepared: with addition of the extract (100 and 200 ppm CAE/kg), in addition to control formulations without the addition of antioxidant, and with the addition of synthetic antioxidant. The products were characterized by phys. and chem. anal. and analyzed for oxidative stability during 45 days of storage under freezing. The addition of extract in the proportion of 200 ppm CAE/kg of hamburger revealed efficacy against lipid oxidation equivalent to treatment with a synthetic antioxidant. As for protein oxidation, there was no pro or antioxidant influence in the treatments. The addition of organic coffee husk extract to chicken hamburgers is thus indicated, being considered as a potential natural additive. In addition, the use of coffee husks helps to minimize the lager amounts of agro-industrial byproducts generated by the coffee industry. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Synthetic Route of C8H16O).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Synthetic Route of C8H16O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cioffi, Christopher L. et al. published their research in Journal of Medicinal Chemistry in 2020 | CAS: 142253-56-3

1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol

Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities was written by Cioffi, Christopher L.;Muthuraman, Parthasarathy;Raja, Arun;Varadi, Andras;Racz, Boglarka;Petrukhin, Konstantin. And the article was included in Journal of Medicinal Chemistry in 2020.Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol This article mentions the following:

Accumulation of cytotoxic lipofuscin bisretinoids may contribute to atrophic age-related macular degeneration (AMD) pathogenesis. Retinal bisretinoid synthesis depends on the influx of serum all-trans-retinol delivered via a tertiary retinol binding protein 4 (RBP4)-transthyretin (TTR)-retinol complex. We previously identified selective RBP4 antagonists that dissociate circulating RBP4-TTR-retinol complexes, reduce serum RBP4 levels, and inhibit bisretinoid synthesis in models of enhanced retinal lipofuscinogenesis. However, the release of TTR by selective RBP4 antagonists may be associated with TTR tetramer destabilization and, potentially, TTR amyloid formation. We describe herein the identification of bispecific RBP4 antagonist-TTR tetramer kinetic stabilizers. Standout analog I possesses suitable potency for both targets, significantly lowers mouse plasma RBP4 levels, and prevents TTR aggregation in a gel-based assay. This new class of bispecific compounds may be especially important as a therapy for dry AMD patients who have another common age-related comorbidity, senile systemic amyloidosis, a nongenetic disease associated with wild-type TTR misfolding. In the experiment, the researchers used many compounds, for example, 1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol).

1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Wang et al. published their research in Bioorganic & Medicinal Chemistry in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 111-46-6

Synthesis of lathyrane diterpenoid nitrogen-containing heterocyclic derivatives and evaluation of their anti-inflammatory activities was written by Wang, Wang;Xiong, Liangliang;Li, Yutong;Song, Zhuorui;Sun, Dejuan;Li, Hua;Chen, Lixia. And the article was included in Bioorganic & Medicinal Chemistry in 2022.Reference of 111-46-6 This article mentions the following:

As our ongoing work on lathyrane diterpenoid derivatization, three series of lathyrane diterpenoid derivatives were designed and synthesized based combination principles, including pyrazole, thiazole and furoxan moieties I [R = Et, phenyl; R1 = Me, Cl, F, etc], II [R2 = Me, Ph, cyclohexyl, etc.] and III [R3 = Bu, butyne, 1,4-dimethylbenzene, etc.] . Biol. evaluation indicated that compound III [R3 = ethoxyethane] exhibited excellently inhibitory activity on LPS-induced NO production in RAW264.7 cells (IC50 = 0.38 ± 0.18 μM). The preliminary structure-activity relationships (SARs) suggested that phenylsulfonyl substituted furoxan moiety had the strongest ability to improve anti-inflammatory activity of lathyrane diterpenoids. Furthermore, compound III [R3 = ethoxyethane] significantly reduced the level of ROS. Its mol. mechanism was related to inhibiting the transcriptional activation of Nrf2/HO-1 pathway. Based on these considerations, III [R3 = ethoxyethane] might be a promising anti-inflammatory agent, which is noteworthy for further exploration. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Reference of 111-46-6).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 111-46-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Drouin, Samantha D. et al. published their research in Inorganica Chimica Acta in 2021 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C4H9NaS

Electrochemistry of transition metal hydride diphosphine complexes trans-MH(X)(PP)2 and trans-[MH(L)(PP)2]+, M = Fe, Ru, Os; PP = chelating phosphine ligand was written by Drouin, Samantha D.;Maltby, Patricia A.;Rennie, Benjamin E.;Schweitzer, Caroline T.;Golombek, Adina;Cappellani, E. Paul;Morris, Robert H.. And the article was included in Inorganica Chimica Acta in 2021.Formula: C4H9NaS This article mentions the following:

A series of over 30 iron, ruthenium, and osmium hydride phosphine complexes are reported, along with their MIII/II redox potentials. The complexes are of the type MH(PP)n(X) or [MH(PP)n(L)]+, where PP is one of the following bidentate phosphine ligands: dppe, dtpe, depe, and dtfpe, with n = 2; or the tetradentate phosphine ligand meso-tet-1, with n = 1. The electrochem. data of these complexes and those from the literature are used to determine the Lever EL parameter of -0.65 V for the hydride ligand for iron and ruthenium. For osmium, however, the EL value for the hydride ligand is found to be more pos. at only -0.37 V, an increase which is attributed to Os-H σ bond strengthening due to relativistic effects. The correlation holds for irreversible oxidations as well as reversible ones. These EL values can now be used along with Lever’s equations to predict redox potentials of other iron-group hydride complexes. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Formula: C4H9NaS).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C4H9NaS

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gogoi, Gautam et al. published their research in Molecular Catalysis in 2022 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application In Synthesis of (2,4-Dichlorophenyl)methanol

CuO-Fe(III)-Zeolite-Y as efficient catalyst for oxidative alcohol-amine coupling reactions was written by Gogoi, Gautam;Baruah, Manash J.;Biswas, Subir;Hoque, Nazimul;Lee, Seonghwan;Park, Young-Bin;Saikia, Lakshi;Bania, Kusum K.. And the article was included in Molecular Catalysis in 2022.Application In Synthesis of (2,4-Dichlorophenyl)methanol This article mentions the following:

CuO nanocatalyst with layered structure was supported over Fe-exchanged zeolite-Y (CuO-Fe(III)-Y) for selective synthesis of amides by oxidative coupling of aromatic primary alcs. and amines. The CuO-Fe(III)-Y catalyst was characterized by different physicochem. and spectroscopic techniques. The amide bond formation reaction was found to occur in absence of any external base and reagents. The temperature-programmed desorption (TPD) study predicted the development of strong basic sites in the CuO-Fe(III)-Y catalyst that boosted the dehydrogenative coupling process. The activity of the material in such coupling reaction was found to be comparable to those of other costly metal catalysts under different reaction conditions. The product yield of the reaction was found to be substrate-dependent giving moderate to maximum yield of 85%. The anomalies in the reaction appeared in case of 5-nitro-2-chloro-benzylalc. that undergoes a C-N coupling product through C-Cl bond activation. The mechanism of the reaction was believed to proceed through FeIV=O species that helped in the activation of the benzylic C-H bond . In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Application In Synthesis of (2,4-Dichlorophenyl)methanol).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application In Synthesis of (2,4-Dichlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts