Fernanda Bonfim de Souza, Beatriz et al. published their research in Industrial & Engineering Chemistry Research in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 111-46-6

COSMO Study on the Heptane-Toluene-DMF/DEG-KSCN Liquid-Liquid Equilibrium System was written by Fernanda Bonfim de Souza, Beatriz;Lenhare, Stephanie;Cristaldo Heck, Stenio;Zuber, Andre;Beneti, Stephani Caroline;Zanette, Andreia Fatima;Filho, Lucio Cardozo. And the article was included in Industrial & Engineering Chemistry Research in 2022.Reference of 111-46-6 This article mentions the following:

The class of aromatic hydrocarbons is one of the most important in the petrochem. industry. As they are in a multicomponent mixture with aliphatics, separation represents a huge challenge given the proximity of their b.ps., and liquid-liquid extraction represents a good alternative to conventional separation processes. In this paper, liquid-liquid equilibrium data of a heptane-toluene-dimethylformamide (DMF)-diethylene glycol (DEG) system in the presence and absence of potassium thiocyanate salt were obtained and used to study solvation of ions in the DMF-DEG polar mixture solvent, using COnductor-like Screening MOdel (COSMO) modeling. It was verified that the solvation complexes failed to describe the system equilibrium despite the otherwise expected. COSMO-RS (realistic solvents) calculations of the unsolvated ions presented better approximation with exptl. data compared to COSMO-SAC (segment activity coefficient) ones. The best simulation obtained with nonsolvated ions occurred probably due to 蟺 electron interactions with ion charge and hydrogen bond with the solvent. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Reference of 111-46-6).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 111-46-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

do Carmo Sperandio, Natania et al. published their research in Revista Brasileira de Farmacognosia in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 5-Isopropyl-2-methylphenol

Effects on Pseudosuccinea columella Snails Exposed to Origanum vulgare and Thymus vulgaris Volatile Oils was written by do Carmo Sperandio, Natania;Vidal, Maria Larissa Bitencourt;da Silva, Ygor Henrique;Ito, Mitsue;Costa, Adilson Vidal;de Queiroz, Vagner Tebaldi;Ignacchiti, Mariana Drummond Costa;Boeloni, Jankerle Neves;Martins, Isabella Vilhena Freire. And the article was included in Revista Brasileira de Farmacognosia in 2022.Recommanded Product: 5-Isopropyl-2-methylphenol This article mentions the following:

Fasciolosis is an anthropozoonosis of clin. and economic importance that affects several mammals. The causative agent, Fasciola hepatica, has as an obligate intermediate host, the snail Pseudosuccinea columella; therefore, control actions against the mollusks are essential to control the disease. This study aims to evaluate the effect of volatile oils of Origanum vulgare L. and Thymus vulgaris L., both species members of Lamiaceae family, and their resp. major compounds, carvacrol and thymol, as an alternative in the control of the American ribbed fluke snail. The specimens were immersed in solutions with concentrations of 0.025% (mv-1), 0.05% (mv-1), and 0.1% (mv-1) and analyzed at 30 min, 2 h, 6 h, 12 h, and 24 h in relation to motility, adhesion in the plate, response to painful stimulus, and mortality. For ovigerous masses, the interruption or not of embryonic development was analyzed, with observations every 72 h up to 18 days. All compounds promoted the mortality of mollusks and the paralysis of the embryonic development. The test constituents promoted mortality after 30 min. Histol. analyses indicated the occurrence of necrosis, mainly in the digestive gland and in the albumen gland and disorganized connective tissue. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Recommanded Product: 5-Isopropyl-2-methylphenol).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 5-Isopropyl-2-methylphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gardini, Fausto et al. published their research in African Journal of Microbiology Research in 2009 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Composition of four essential oils obtained from plants from Cameroon, and their bactericidal and bacteriostatic activity against Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus was written by Gardini, Fausto;Belletti, Nicoletta;Ndagijimana, Maurice;Guerzoni, Maria E.;Tchoumbougnang, Francois;Zollo, Paul H. Amvam;Micci, Claudio;Lanciotti, Rosalba;Sado Kamdem, Sylvain L.. And the article was included in African Journal of Microbiology Research in 2009.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

The composition of four essential oils (EOs) extracted by hydrodistillation from plants of common use in Cameroon (Curcuma longa, Xylopia aethiopica, Zanthoxylum leprieurii L., Zanthoxylum xanthoxyloides) was assessed by gas chromatog.-mass. Their bactericidal and bacteriostatic activity was tested in vitro against three food borne pathogenic bacteria: Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus. The bacteriostatic activities of this EOs on food borne bacteria were assessed in vitro through optical d. measurements. The minimal bactericidal concentrations (MBC) were determined in broth combined with a spot plating method. Z. xanthoxyloides and Z. leprieurii showed a similar composition, with a prevalence of oxygenated monoterpenes (about 58%). The EO of Z. xanthoxyloides was the most effective against the microorganisms tested. Its higher concentration of geraniol could be linked to this higher activity. In almost all cases, the MBC was higher than the maximum concentration tested (3000 ppm). Notwithstanding their low bactericidal effect, the EOs studied showed interesting inhibiting activities against the tested food borne pathogens. S. enteritidis was the most resistant to the bacteriostatic effect of the four EOs. The knowledge of the antimicrobial potential of local plant EOs used in developing countries could help in their choice and their use to improve food safety and shelf-life. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Yuanyuan et al. published their research in Tetrahedron in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of (4-Chlorophenyl)methanol

A reusable MOF supported single-site nickel-catalyzed direct N-alkylation of anilines with alcohols was written by Lu, Yuanyuan;Chai, Huining;Yu, Kun;Huang, Chaonan;Li, Yujie;Wang, Jinyu;Ma, Jiping;Tan, Weiqiang;Zhang, Guangyao. And the article was included in Tetrahedron in 2022.Quality Control of (4-Chlorophenyl)methanol This article mentions the following:

A highly selective and reusable Ni(II)-bipyridine-based metal-organic framework (MOF) catalyst was designed for direct N-alkylation of amines with alcs. through a borrowing hydrogen (BH) strategy. This earth-abundant metal-based metal-organic framework catalyst significantly outperforms its homogeneous analogs and is reusable for at least up to 4 cycles without significant decrease in the yield of the target product. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Quality Control of (4-Chlorophenyl)methanol).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of (4-Chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fattahi, Nazir et al. published their research in RSC Advances in 2022 | CAS: 2216-51-5

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 2216-51-5

Novel deep eutectic solvent-based liquid phase microextraction for the extraction of estrogenic compounds from environmental samples was written by Fattahi, Nazir;Shamsipur, Mojtaba;Nematifar, Ziba;Babajani, Nasrin;Moradi, Masoud;Soltani, Shahin;Akbari, Shahram. And the article was included in RSC Advances in 2022.Application of 2216-51-5 This article mentions the following:

Steroid hormones, such as estrone (E1), 17尾-estradiol (E2), 17尾-ethinylestradiol (EE2) and estriol (E3) are a group of lipophilic active substances, synthesized biol. from cholesterol or chem. A pH-switchable hydrophobic deep eutectic solvent-based liquid phase microextraction (DES-LPME) technique was established and combined with gas chromatog.-mass spectroscopy for the determination of estrogenic compounds in environmental water and wastewater samples. A DES was synthesized using l-menthol as HBA and (1S)-(+)-camphor-10-sulfonic acid (CSA) as HBD, and used as a green extraction solvent. By adjusting the pH of the solution, the unique behavior of the DES in the phase transition and extraction of the desired analytes was investigated. The homogenization process of the mixture is done only by manual shaking in less than 30 s and the phase separation is done only by changing the pH and without centrifugation. Some effective parameters on the extraction and derivatization, such as molar ratio of DES components, DES volume, KOH concentration, HCl volume, salt addition, extraction and derivatization time and derivatization prior or after extraction were studied and optimized. Under the optimum conditions, relative standard deviation (RSD) values for intra-day and inter-day of the method based on 7 replicate measurements of 20 ng L-1 of estrogenic compounds and 10 ng L-1 for internal standard in different samples were in the range of 2.2-4.6% and 3.9-5.7%, resp. The calibration graphs were linear in the range of 0.5-100 ng L-1 and the limits of detection (LODs) were in the range of 0.2-1.0 ng L-1. The relative recoveries of environmental water and wastewater samples which have been spiked with different levels of target compounds were 91.0-108.8%. In the experiment, the researchers used many compounds, for example, (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5Application of 2216-51-5).

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 2216-51-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Payandeh, Maryam et al. published their research in International Journal of Biological Macromolecules in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Safety of 5-Isopropyl-2-methylphenol

Chitosan nanocomposite incorporated Satureja kermanica essential oil and extract: Synthesis, characterization and antifungal assay was written by Payandeh, Maryam;Ahmadyousefi, Mehdi;Alizadeh, Hamidreza;Zahedifar, Mahboobeh. And the article was included in International Journal of Biological Macromolecules in 2022.Safety of 5-Isopropyl-2-methylphenol This article mentions the following:

The present study reports the design, synthesis, and characterization of nanoencapsulated Satureja kermanica essential oil/extract by chitosan biopolymer (SKEO-CSN)/(SKEX-CSN) for the antifungal efficacy against Fusarium oxysporum, Alternaria alternata, Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, and Pythium aphanidermatum. The prepared SKEO-CSN and SKEX-CSN were characterized by Fourier transform IR (FTIR), SEM (SEM), transmission electron microscopy (TEM), thermogravimetric anal. (TGA), and X-ray diffraction anal. (XRD). GC-Mass anal. was done to identify Satureja kermanica essential oil chem. compounds (SKEO). Thirty-five different components were detected from GC-MS anal. Thymol (46.54 %), and Carvacrol (30.54 %) were demonstrated as major compounds Antifungal studies showed that the SKEO-CSN and SKEX-CSN formulation effectively inhibit fungal growth more than free SKEO and SKEX. According to the results, SKEO-CSN and SKEX-CSN provide a wide range of promising antifungal effects and can be applied as an efficient green strategy to protect plants from fungus infections. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Safety of 5-Isopropyl-2-methylphenol).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Safety of 5-Isopropyl-2-methylphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Schulz, Thomas et al. published their research in Angewandte Chemie, International Edition in 2009 | CAS: 15777-70-5

4-Hydroxy-3-methylbenzonitrile (cas: 15777-70-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Name: 4-Hydroxy-3-methylbenzonitrile

Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides was written by Schulz, Thomas;Torborg, Christian;Schaeffner, Benjamin;Huang, Jun;Zapf, Alexander;Kadyrov, Renat;Boerner, Armin;Beller, Matthias. And the article was included in Angewandte Chemie, International Edition in 2009.Name: 4-Hydroxy-3-methylbenzonitrile This article mentions the following:

Novel imidazole-based phosphine ligands are synthesized on scales up to 100 g by a convenient lithiation-phosphorylation method. The phosphines are stable towards air and moisture and are successfully applied as ligands in the palladium-catalyzed selective hydroxylation of aryl halides. In the experiment, the researchers used many compounds, for example, 4-Hydroxy-3-methylbenzonitrile (cas: 15777-70-5Name: 4-Hydroxy-3-methylbenzonitrile).

4-Hydroxy-3-methylbenzonitrile (cas: 15777-70-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Name: 4-Hydroxy-3-methylbenzonitrile

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hatano, Manabu et al. published their research in Journal of Organic Chemistry in 2006 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

3,3′-Diphosphoryl-1,1′-bi-2-naphthol-Zn(II) Complexes as Conjugate Acid-Base Catalysts for Enantioselective Dialkylzinc Addition to Aldehydes was written by Hatano, Manabu;Miyamoto, Takashi;Ishihara, Kazuaki. And the article was included in Journal of Organic Chemistry in 2006.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:

A highly enantioselective dialkylzinc (R22Zn) addition to a series of aromatic, aliphatic, and heteroaromatic aldehydes was developed based on conjugate Lewis acid-Lewis base catalysis. Bifunctional BINOL ligands bearing phosphine oxides [P(:O)R2], phosphonates [P(:O)(OR)2], or phosphoramides [P(:O)(NR2)2] at the 3,3′-positions were prepared by using a phospho-Fries rearrangement as a key step. The coordination of a NaphO-Zn(II)-R2 center as a Lewis acid to a carbonyl group in a substrate and the activation of R22Zn(II) with a phosphoryl group (P:O) as a Lewis base in the 3,3′-diphosphoryl-BINOL-Zn(II) catalyst could promote carbon-carbon bond formation with high enantioselectivities (up to >99% ee). Mechanistic studies were performed by X-ray analyses of a free ligand and a tetranuclear Zn(II) cluster, a 31P NMR experiment on Zn(II) complexes, an absence of nonlinear effect between the ligand and Et-adduct of benzaldehyde, and stoichiometric reactions with some chiral or achiral Zn(II) complexes to propose a transition-state assembly including monomeric active intermediates. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Ruiting et al. published their research in Preprints – American Chemical Society, Division of Petroleum Chemistry in 2003 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C4H9NaS

Oxidation of sodium mercaptide with sulfonated cobalt phthalocyanine as catalyst was written by Liu, Ruiting;Xia, Daohong;Xiang, Yuzhi. And the article was included in Preprints – American Chemical Society, Division of Petroleum Chemistry in 2003.COA of Formula: C4H9NaS This article mentions the following:

The oxidation of Na mercaptides by air in alk. solution with CoSPc as catalyst was studied. Effects of various factors, including temperature, structures of mercaptides and concentration of alk. solution, on the oxidation of Na mercaptides were analyzed, which can provide some guides for the design of parameters in LPG sweetening. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2COA of Formula: C4H9NaS).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C4H9NaS

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Stephany, Olivier et al. published their research in Journal of Chromatography A in 2012 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

Influence of amino acid moiety accessibility on the chiral recognition of cyclodextrin-amino acid mixed selectors in enantioselective gas chromatography was written by Stephany, Olivier;Tisse, Severine;Coadou, Gael;Bouillon, Jean-Philippe;Peulon-Agasse, Valerie;Cardinael, Pascal. And the article was included in Journal of Chromatography A in 2012.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:

Original mixed selectors were synthesized by coupling a single L-valine diamide moiety on permethylated 尾-cyclodextrin. The structures of the new selectors were designed to limit the interactions between the L-valine derivative and cyclodextrin by removing the amino acid moiety from the cyclodextrin cavity by an amide linkage on mono-6-amino permethylated 尾-CD or the insertion of a carboxymethyl group. The accessibility of the amino acid group moiety was thus facilitated. The new mixed selectors exhibited better enantioselectivity than Chirasil-L-Val for half (selector based on mono-6-amino permethylated 尾-CD) or more (selector with the carboxymethyl group) of the 41 amino acid derivatives Mol. modeling confirmed that these results could be attributed to an increase in the distance between the chiral center of the amino acid and the cyclodextrin cavity allowing better access of the amino acid moiety. These new mixed chiral selectors demonstrated a novel enantioselective capability with the successful separation of >90 racemic mixtures among the 105 chiral compounds tested. These mixed selectors exhibited enhanced enantioselectivity in comparison to binary selectors previously described with respect to both enantiomer resolution and the number of separated chiral compounds Also, an improvement of the enantioseparation factors compared to the corresponding parent phases for the amino acid derivatives was observed in many cases. These mixed selectors should therefore be considered some of the most versatile selectors for chiral gas chromatog. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts