Scholz, Roland et al. published their research in European Journal of Organic Chemistry in 2010 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: Sodium 2-methyl-2-propanethiolate

Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts was written by Scholz, Roland;Hellmann, Gunther;Rohs, Susanne;Oezdemir, Diana;Raabe, Gerhard;Vermeeren, Cornelia;Gais, Hans-Joachim. And the article was included in European Journal of Organic Chemistry in 2010.Recommanded Product: Sodium 2-methyl-2-propanethiolate This article mentions the following:

The reactions of enantiopure S-tert-Bu sulfones of the type R1CH(R2)SO2tBu (≥99 % ee) with lithiumorganyl compounds gave the corresponding chiral α-sulfonyl carbanion salts [R1C(R2)SO2tBu]Li with ≥94 % ee. The enantioselectivity of the deprotonation of the phenyl- but not dialkyl-substituted sulfones is strongly dependent on the nature of the lithiumorganyl. Because of this observation and the strong decrease in enantioselectivity in the presence of TMEDA and HMPA, we propose an intramol. proton transfer following complexation of the sulfone by RLi. Racemization of [R1C(R2)SO2tBu]Li follows first-order kinetics and seems to be mainly an enthalpic process with a small neg. activation entropy, as revealed by polarimetric measurements at low temperatures This is in accordance with Cα-S bond rotation as the rate-determining step. The salts [R1C(R2)SO2tBu]Li have half-lives of racemization in the order of several hours at -105 °C. The deuteration of the salts at -105 °C with CF3CO2D proceeded with enantioselectivities of ≥94 % ee, the magnitude of which was not significantly affected by the presence of TMEDA and HMPA. The salts also reacted with carbon-based electrophiles at low temperatures with high enantioselectivity. The conversion of R1CH(R2)SO2tBu via [R1C(R2)SO2tBu]Li to R1C(R2,E)SO2tBu, which involves the loss of stereogenicity at the α-stereogenic center and its re-establishment upon reaction of the chiral carbanion with electrophiles, occurred with high overall enantioselectivity. Electrophiles attack the anionic C atom of [R1C(R2)SO2tBu]Li with high selectivity on the side syn to the O atoms and anti to the tert-Bu group. The reactivity of the dialkyl-substituted salts [R1C(R2)SO2tBu]Li (R1, R2 = alkyl) is significantly higher than that of the benzylic salts [RC(Ph)SO2tBu]Li (R = alkyl) and the HMPA-coordinated SIPs of [MeC(Ph)SO2tBu]Li are significantly more reactive towards EtI than the corresponding O-Li contact ion pairs. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Recommanded Product: Sodium 2-methyl-2-propanethiolate).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: Sodium 2-methyl-2-propanethiolate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gao, Yan et al. published their research in International Journal of Systematic and Evolutionary Microbiology in 2021 | CAS: 10030-85-0

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 10030-85-0

Tsuneonella suprasediminis sp. nov., isolated from the Pacific Ocean was written by Gao, Yan;Li, Guangyu;Fang, Chen;Shao, Zongze;Wu, Yue-Hong;Xu, Xue-Wei. And the article was included in International Journal of Systematic and Evolutionary Microbiology in 2021.Application of 10030-85-0 This article mentions the following:

A Gram-stain-neg., rod-shaped and aerobic bacterial strain, named Ery12T, was isolated from the overlying water of the Lau Basin in the Southwest Pacific Ocean. Strain Ery12T showed high 16S rRNA gene sequences similarity to Tsuneonella flava MS1-4T (99.9%), T. mangrovi MCCC 1K03311T (98.1%), Altererythrobacter ishigakiensis NBRC 107699T (97.3%) and exhibited ≤97.0% sequence similarity with other type strains of species with validly published names. Growth was observed in media with 0-10.0% NaCl (optimum 0-1.0%, w/v), pH 5.0-9.5 (optimum 6.0-7.0) and 10-42°C (optimum 30-37°C). The predominant respiratory quinone was ubiquinone 10 (Q-10). The major cellular fatty acid was summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The major polar lipids were sphingoglycolipid, phosphatidyglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified glycolipids, one unidentified aminoglycolipid and one unidentified lipid. The DNA G + C content was 60.8%. The ANI and in silico DDH values between strain Ery12T and the type strains of its closely related species were 71.0-91.8% and 19.5-44.6%, resp. According to the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain Ery12T represents a novel species of the genus Tsuneonella, for which the name Tsuneonella suprasediminis is proposed. The type strain is Ery12T (= CGMCC 1.16500T = MCCC 1A04421T = KCTC 62388T). We further propose to reclassify Altererythrobacter rhizovicinus and Altererythrobacter spongiae as Pelagerythrobacter rhizovicinus comb. nov. and Altericroceibacterium spongiae comb. nov., resp. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Application of 10030-85-0).

(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 10030-85-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Zixuan et al. published their research in Biochemical Engineering Journal in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C4H10O3

Fe3O4 nanoparticles-mediated solar-driven enzymatic PET degradation with PET hydrolase was written by Li, Zixuan;Chen, Kun;Yu, Linling;Shi, Qinghong;Sun, Yan. And the article was included in Biochemical Engineering Journal in 2022.Electric Literature of C4H10O3 This article mentions the following:

Cost-effective and eco-friendly treatment or recycled use of poly (ethylene terephthalate) (PET) is highly desired. Enzymic PET degradation is considered a promising approach, but currently available PET hydrolases (PETases) have low activity at ambient temperature Thus, elevating the reaction system temperature in a cost-effective way becomes a key to the economical enzymic PET degradation Herein, we proposed solar-driven enzymic PET degradation with DuraPETase, a stable mutant of PETase, by using Fe3O4 nanoparticles (NPs) as the solar-to-thermal agent. Simulated solar irradiation could elevate the suspension of Fe3O4 NPs from 25°C to 46°C for the effective PET degradation The enzyme immobilized onto Fe3O4 NPs, DuraPETase@Fe3O4, had higher stability than free DuraPETase, but a 10-d PET degradation experiments under simulated solar irradiation revealed that free DuraPETase in the presence of Fe3O4 NPs was approx. three times more effective than the DuraPETase@Fe3O4 system because of the superiority of free DuraPETase in degrading PET. This implies that enzyme immobilization is unnecessary in such a single-use system. By contrast, the DuraPETase-only system showed only 15.5% efficiency of the Fe3O4-mediated solar-driven system with free DuraPETase. The research demonstrated the potential of the Fe3O4-mediated solar-driven enzymic PET degradation strategy for further development in different practical scenarios. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Electric Literature of C4H10O3).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C4H10O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Karpova, L. K. et al. published their research in Aptechnoe Delo in 1965 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C10H22O3

Photocolorimetric determination of cocaine was written by Karpova, L. K.. And the article was included in Aptechnoe Delo in 1965.Electric Literature of C10H22O3 This article mentions the following:

A photocolorimetric method for the determination of cocaine-HCl (I) based on its reaction with alk. NH2OH then with FeCl3 in acid medium is described. The procedure is suitable for the determination of 0.2-1.0 mg. I with a precision of ± 1.5%. The method is based on the formation of a colored Fe-hydroxamic acid complex, the absorbance of which is read in a spectrophotometer equipped with a green filter. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Electric Literature of C10H22O3).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C10H22O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qin, Tian et al. published their research in Journal of the American Chemical Society in 2011 | CAS: 1634-34-0

2′,6′-Dihydroxy-4′-methylacetophenone (cas: 1634-34-0) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Name: 2′,6′-Dihydroxy-4′-methylacetophenone

Vinylogous Addition of Siloxyfurans to Benzopyryliums: A Concise Approach to the Tetrahydroxanthone Natural Products was written by Qin, Tian;Johnson, Richard P.;Porco, John A. Jr.. And the article was included in Journal of the American Chemical Society in 2011.Name: 2′,6′-Dihydroxy-4′-methylacetophenone This article mentions the following:

A concise approach to the tetrahydroxanthone natural products employing vinylogous addition of siloxyfurans to benzopyryliums and a late-stage Dieckmann cyclization was developed. With this methodol., chiral, racemic forms of the natural products blennolide B (I) and blennolide C (II) were synthesized in a maximum of four steps from a 5-hydroxychromone substrate. The regio- and diastereoselectivity of the vinylogous additions was probed using computational studies, which suggested the involvement of Diels-Alder-like transition states. In the experiment, the researchers used many compounds, for example, 2′,6′-Dihydroxy-4′-methylacetophenone (cas: 1634-34-0Name: 2′,6′-Dihydroxy-4′-methylacetophenone).

2′,6′-Dihydroxy-4′-methylacetophenone (cas: 1634-34-0) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Name: 2′,6′-Dihydroxy-4′-methylacetophenone

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Dongdong et al. published their research in International Journal of Food Microbiology in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Product Details of 3391-86-4

Study of bacterial community succession and reconstruction of the core lactic acid bacteria to enhance the flavor of paocai was written by Wang, Dongdong;Chen, Gong;Tang, Yao;Ming, Jianying;Huang, Runqiu;Li, Jiayi;Ye, Meizuo;Fan, Zhiyi;Chi, Yuanlong;Zhang, Qisheng;Zhang, Wenxue. And the article was included in International Journal of Food Microbiology in 2022.Product Details of 3391-86-4 This article mentions the following:

Paocai is a widely consumed traditional Chinese fermented vegetable product. To study the effects of bacterial community succession and core microbial reconstruction on the flavor of paocai, culture-dependent and culture-independent methods were used to analyze the bacterial community structure of naturally fermented paocai. HPLC and GC-MS were used to investigate changes in flavor compounds during the fermentation of paocai. Key odorants were identified by olfactometry combined with GC-MS. The results showed that dominant bacteria in the paocai fermentation were mostly cultivable. Leuconostoc mesenteroides, Weissella cibaria, and Lactococcus lactis appeared at the start of fermentation, Leu. mesenteroides, L. lactis, Lactiplantibacillus plantarum, and Levilactobacillus brevis appeared in the middle of fermentation, and L. plantarum dominated fermentation in the late stage. Leuconostoc mesenteroides CPTCC 1R3 (LEM), Weissella cibaria CPTCC 1R15 (WC), Levilactobacillus brevis CPTCC 3R8 (LB), and Lactiplantibacillus plantarum CPTCC 5R10 (LP) were screened from naturally fermented paocai and used for microbial reconstruction, revealing that the growth and fermentation profiles of the strains were closely related to the evolution of the bacterial community. Paocai inoculated with LEM had the following characteristics: fast fermentation, quickly disappearance of pungent odor of the raw materials, and the improved flavor and taste. Paocai inoculated with WC and LB contained ethanol and mannitol, but inoculated strains were poorly acid-tolerated. However, they can be used as auxiliary strains to enhance the flavor of paocai. Sample inoculated with LP resulted in slow fermentation and massive acid production Mixed culture fermentation of paocai has more advantages than pure culture fermentation Leu. mesenteroides and L. plantarum were the core microorganisms related to the flavor formation of paocai. These findings contributed to the better understanding of mechanisms underlie in the microbial community succession and flavor formation during paocai fermentation In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Product Details of 3391-86-4).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Product Details of 3391-86-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Huang, Huan-Ming et al. published their research in Journal of the American Chemical Society in 2022 | CAS: 2216-51-5

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Safety of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol

Radical Carbonyl Umpolung Arylation via Dual Catalysis was written by Huang, Huan-Ming;Bellotti, Peter;Erchinger, Johannes E.;Paulisch, Tiffany O.;Glorius, Frank. And the article was included in Journal of the American Chemical Society in 2022.Safety of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol This article mentions the following:

A series of aryl benzoates I [R = iPr, tBu, cyclohexyl, etc.; R1 = 4-NCC6H4, 2-NCC6H4, 2-pyridyl, etc.] via dual nickel and photoredox catalyzed radical carbonyl umpolung arylation of aldehydes and aryl bromides was reported. This redox-neutral approach provided a complementary method to construct Grignard-type products from (hetero)aryl bromides and aliphatic aldehydes, without the need for prefunctionalization. Sequential activation, hydrogen atom transfer and halogen atom transfer process could directly converted aldehydes to the corresponding ketyl radicals, which further react with aryl-nickel intermediates in an overall polarity-reversal process. This radical strategy tolerated-among others-acidic functional groups, heteroaryl motifs and sterically hindered substrates and was applied in the late-stage modification of drugs and natural products. In the experiment, the researchers used many compounds, for example, (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5Safety of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol).

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Safety of (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yang, Li et al. published their research in ACS Catalysis in 2018 | CAS: 80866-76-8

(3-Methyl-2-nitrophenyl)methanol (cas: 80866-76-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Computed Properties of C8H9NO3

Enabling CO Insertion into o-Nitrostyrenes beyond Reduction for Selective Access to Indolin-2-one and Dihydroquinolin-2-one Derivatives was written by Yang, Li;Shi, Lijun;Xing, Qi;Huang, Kuo-Wei;Xia, Chungu;Li, Fuwei. And the article was included in ACS Catalysis in 2018.Computed Properties of C8H9NO3 This article mentions the following:

The transition metal-catalyzed reductive cyclization of o-nitrostyrene in the presence of carbon monoxide (CO) has been developed to be a general synthetic route to an indole skeleton, wherein CO was used as a reductant to deoxidize nitroarene into nitrosoarene and/or nitrene with CO2 release, but the selective insertion of CO into the heterocyclic product with higher atom economy has not yet been realized. Herein, the Pd-catalyzed reduction of o-nitrostyrene by CO and its regioselective insertion were efficiently achieved to produce synthetically useful five- and six-membered benzo-fused lactams. Detailed investigations revealed that the chemoselectivity to indole or lactam was sensitive to the nature of the counteranions of Pd2+ precursors, whereas ligands significantly decided the carbonylative regioselectivity by different reaction pathways. Using PdCl2/PPh3/B(OH)3 (condition A), an olefin hydrocarboxylation was primarily initiated followed by partial reduction of the NO2 moiety and cyclization reaction to give N-hydroxyl indolin-2-one, which was further catalytically reduced by CO to afford the indolin-2-one as the final product with up to 95% yield. When the reaction was conducted under the Pd(TFA)2/BINAP/TsOH·H2O system (condition B), complete deoxygenation and carbonylation of the NO2 group occurred initially to yield the corresponding isocyanate followed by internal hydrocyclization to generate 3,4-dihydroquinolin-2-one with up to 98% yield. Importantly, the methodol. could be efficiently applied in the synthesis of marketed drug Aripiprazole. In the experiment, the researchers used many compounds, for example, (3-Methyl-2-nitrophenyl)methanol (cas: 80866-76-8Computed Properties of C8H9NO3).

(3-Methyl-2-nitrophenyl)methanol (cas: 80866-76-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Computed Properties of C8H9NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Xin et al. published their research in ACS Catalysis in 2020 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Computed Properties of C9H9F3O

Erbium-Catalyzed Regioselective Isomerization-Cobalt-Catalyzed Transfer Hydrogenation Sequence for the Synthesis of Anti-Markovnikov Alcohols from Epoxides under Mild Conditions was written by Liu, Xin;Longwitz, Lars;Spiegelberg, Brian;Toenjes, Jan;Beweries, Torsten;Werner, Thomas. And the article was included in ACS Catalysis in 2020.Computed Properties of C9H9F3O This article mentions the following:

Herein, we report an efficient isomerization-transfer hydrogenation reaction sequence based on a cobalt pincer catalyst (1 mol%), which allows the synthesis of a series of anti-Markovnikov alcs. from terminal and internal epoxides under mild reaction conditions (≤55°, 8 h) at low catalyst loading. The reaction proceeds by Lewis acid (3 mol % Er(OTf)3)-catalyzed epoxide isomerization and subsequent cobalt-catalyzed transfer hydrogenation using ammonia borane as the hydrogen source. The general applicability of this methodol. is highlighted by the synthesis of 43 alcs. from epoxides. A variety of terminal (23 examples) and 1,2-disubstituted internal epoxides (14 examples) bearing different functional groups are converted to the desired anti-Markovnikov alcs. in excellent selectivity and yields of up to 98%. For selected examples, it is shown that the reaction can be performed on a preparative scale up to 50 mmol. Notably, the isomerization step proceeds via the most stable carbocation. Thus, the regiochem. is controlled by stereoelectronic effects. As a result, in some cases, rearrangement of the carbon framework is observed when tri- and tetra-substituted epoxides (6 examples) are converted. A variety of functional groups are tolerated under the reaction conditions even though aldehydes and ketones are also reduced to the resp. alcs. under the reaction conditions. Mechanistic studies and control experiments were used to investigate the role of the Lewis acid in the reaction. Besides acting as the catalyst for the epoxide isomerization, the Lewis acid was found to facilitate the dehydrogenation of the hydrogen donor, which enhances the rate of the transfer hydrogenation step. These experiments addnl. indicate the direct transfer of hydrogen from the amine borane in the reduction step. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Computed Properties of C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Computed Properties of C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kim, Soo Hyun et al. published their research in Journal of the Science of Food and Agriculture in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application In Synthesis of (2R,3S)-rel-Butane-1,2,3,4-tetraol

Sweetness profiles of glycosyl rebaudioside A and binary mixtures with sugar alcohols in aqueous solution and a lemonade model system was written by Kim, Soo Hyun;Park, Sunghee;Hong, Jae-Hee. And the article was included in Journal of the Science of Food and Agriculture in 2022.Application In Synthesis of (2R,3S)-rel-Butane-1,2,3,4-tetraol This article mentions the following:

The demands for better-tasting alternative sweeteners have driven efforts to improve the sensory properties of rebaudioside A (Reb-A), such as glycosylation and blending with bulk sweeteners. This study attempted to (i) investigate the sensory profiles of a novel sweetener, glycosyl rebaudioside A (gReb-A), and its 1:1 mixtures with erythritol or maltitol, and (ii) compare between the sensory characteristics in an aqueous solution and lemonade. The concentrations of the sweeteners were prepared to match the sweetness intensity of a 7% (w/v) sucrose solution using relative sweetness values determined using the two-alternative forced-choice test. Eight trained panelists identified sensory profiles of the sweeteners in an aqueous solution and lemonade using a descriptive anal. protocol. gReb-A had significantly less bitterness and lingering sweetness than Reb-A did, eliciting a sensory profile similar to that of sucrose. The mixture of gReb-A and erythritol was not sensorially differentiated from the sucrose in the aqueous solution Blending with maltitol significantly enhanced the sweetness and suppressed the bitterness of gReb-A. gReb-A and its binary mixtures were perceived as more similar to sucrose in the lemonade than in solution This study suggests that glycosylation and blending with erythritol and maltitol gave a more sucrose-like sweetness profile in the aqueous solution and lemonade. The results of the study can be used to develop adequate sugar substitutes for acidic beverages. 2021 Society of Chem. Industry. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Application In Synthesis of (2R,3S)-rel-Butane-1,2,3,4-tetraol).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application In Synthesis of (2R,3S)-rel-Butane-1,2,3,4-tetraol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts