Liu, Xiangkai’s team published research in Gels in 2021 | CAS: 97-67-6

Gels published new progress about Aggregates. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Liu, Xiangkai published the artcileLuminescent Hydrogel Based on Silver Nanocluster/Malic Acid and Its Composite Film for Highly Sensitive Detection of Fe3+, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is silver nanocluster malic acid polymethylmethacrylate hydrogel aggregation fluorescence quenching; AIE; malic acid; self-assembly; sensor; silver nanoclusters.

Metal nanoclusters (NCs) with excellent photoluminescence properties are an emerging functional material that have rich phys. and chem. properties and broad application prospects. However, it is a challenging problem to construct such materials into complex ordered aggregates and cause aggregation-induced emission (AIE). In this article, we use the supramol. self-assembly strategy to regulate a water-soluble, atomically precise Ag NCs (NH4)9[Ag9(C7H4SO2)9] (Ag9-NCs, [Ag9(mba)9], H2mba = 2-mercaptobenzoic acid) and L-malic acid (L-MA) to form a phosphorescent hydrogel with stable and bright luminescence, which is ascribed to AIE phenomenon. In this process, the AIE of Ag9-NCs could be attributed to the non-covalent interactions between L-MA and Ag9-NCs, which restrict the intramol. vibration and rotation of ligands on the periphery of Ag9-NCs, thus inhibiting the ligand-related, non-radiative excited state relaxation and promoting radiation energy transfer. In addition, the fluorescent Ag9-NCs/L-MA xerogel was introduced into polymethylmethacrylate (PMMA) to form an excellently fluorescent film for sensing of Fe3+. Ag9-NCs/L-MA/PMMA film exhibits an excellent ability to recognize Fe3+ ion with high selectivity and a low detection limit of 0.3 μM. This research enriches self-assembly system for enhancing the AIE of metal NCs, and the prepared hybrid films will become good candidates for optical materials.

Gels published new progress about Aggregates. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Lingzi’s team published research in Diabetes in 2019-12-31 | CAS: 97-67-6

Diabetes published new progress about Biomarkers. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Li, Lingzi published the artcileMetabolomics identifies a biomarker revealing in vivo loss of functional β-cell mass before diabetes onset, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is diabetes beta cell mass metabolomics 1 5 anhydroglucitol liver.

Identification of individuals with decreased functional β-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic β-cell defect remains unsuccessful. Metabolomics has emerged as a powerful tool in providing readouts of early disease states before clin. manifestation. We aimed at identifying novel plasma biomarkers for loss of functional β-cell mass in the asymptomatic prediabetes stage. Nontargeted and targeted metabolomics were applied in both lean β-Phb2-/- (β-cell-specific prohibitin-2 knockout) mice and obese db/db (leptin receptor mutant) mice, two distinct mouse models requiring neither chem. nor dietary treatments to induce spontaneous decline of functional β-cell mass promoting progressive diabetes development. Nontargeted metabolomics on β-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, resp. Machine learning anal. pointed to deoxyhexose sugars consistently reduced at the asymptomatic prediabetes stage, including in db/db mice, showing strong correlation with the gradual loss of β-cells. Further targeted metabolomics by gas chromatog.-mass spectrometry uncovered the identity of the deoxyhexose, with 1,5-anhydroglucitol displaying the most substantial changes. In conclusion, this study identified 1,5-anhydroglucitol as associated with the loss of functional β-cell mass and uncovered metabolic similarities between liver and plasma, providing insights into the systemic effects caused by early decline in β-cells.

Diabetes published new progress about Biomarkers. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xin, Qingping’s team published research in RSC Advances in 2022 | CAS: 97-67-6

RSC Advances published new progress about Adsorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application In Synthesis of 97-67-6.

Xin, Qingping published the artcileLight-responsive metal-organic framework sheets constructed smart membranes with tunable transport channels for efficient gas separation, Application In Synthesis of 97-67-6, the main research area is light metal organic framework sheet membrane gas separation.

Exploring a new type of smart membrane with tunable separation performance is a promising area of research. In this study, new light-responsive metal-organic framework [Co(azpy)] sheets were prepared by a facile microwave method for the first time, and were then incorporated into a polymer matrix to fabricate smart mixed matrix membranes (MMMs) applied for flue gas desulfurization and decarburization. The smart MMMs exhibited significantly elevated SO2(CO2)/N2 selectivity by 184(166)% in comparison with an unfilled polymer membrane. The light-responsive characteristic of the smart MMMs was investigated, and the permeability and selectivity of the Co(azpy) sheets-loaded smart MMMs were able to respond to external light stimuli. In particular, the selectivity of the smart MMM at the Co(azpy) content of 20% for the SO2/N2 system could be switched between 341 and 211 in situ irradiated with Vis and UV light, while the SO2 permeability switched between 58 Barrer and 36 Barrer, resp. This switching influence was mainly ascribed to the increased SO2 adsorption capacity in the visible light condition, as verified by adsorption test. The CO2 permeability and CO2/N2 selectivity of MMMs in the humidified state could achieve 248 Barrer and 103.2, surpassing the Robeson′s upper bound reported in 2019.

RSC Advances published new progress about Adsorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application In Synthesis of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ohno, Tsutomu’s team published research in Journal of Physical Chemistry A in 2020-04-23 | CAS: 97-67-6

Journal of Physical Chemistry A published new progress about Adsorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Product Details of C4H6O5.

Ohno, Tsutomu published the artcileAdsorption of Organic Acids and Phosphate to an Iron (Oxyhydr)oxide Mineral: A Combined Experimental and Density Functional Theory Study, Product Details of C4H6O5, the main research area is adsorption organic acid phosphate iron oxyhydroxide mineral soil.

The interaction of soil organic matter with mineral surfaces is a critical reaction involved in many ecosystem services, including stabilization of organic matter in the terrestrial carbon pool and bioavailability of plant nutrients. Using model organic acids typically present in soil solutions, this study couples laboratory adsorption studies with d. functional theory (DFT) to provide phys. insights into the nature of the chem. bonding between carboxylate functional groups and a model FeOOH cluster. Topol. determination of electron d. at bond critical points using quantum theory of atoms in mols. (QTAIM) anal. revealed that the presence of multiple bonding paths between the organic acid and the FeOOH cluster is essential in determining the competitive adsorption of organic acids and phosphate for FeOOH surface adsorption sites. The electron d. and Laplacian parameter values from QTAIM indicated that the primary carboxylate-FeOOH bond was more ionic than covalent in nature. The exptl. and computational results provide mol.-level evidence of the important role of electrostatic forces in the bonding between carboxylic acids and Fe-hydroxides. This knowledge may assist in the formulation of management studies to meet the challenges of maintaining ecosystems services in the face of a changing climate.

Journal of Physical Chemistry A published new progress about Adsorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Product Details of C4H6O5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chauhan, Devendra Kumar’s team published research in Critical Reviews in Biotechnology in 2021 | CAS: 97-67-6

Critical Reviews in Biotechnology published new progress about Acid soils. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application In Synthesis of 97-67-6.

Chauhan, Devendra Kumar published the artcileAluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants, Application In Synthesis of 97-67-6, the main research area is review aluminum toxicity stress plant nutrient; ABC transporters; ALMT malate; Acidic soil; MATE citrate; Nramp; aluminum toxicity; marker-assisted breeding programs; tolerance.

Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several neg. impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties. Critical Reviews in Biotechnology published new progress about Acid soils. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application In Synthesis of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Saha, B.’s team published research in Plant Biology (Berlin, Germany) in 2020 | CAS: 97-67-6

Plant Biology (Berlin, Germany) published new progress about Acid soils. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Saha, B. published the artcileEnhanced exudation of malate in the rhizosphere due to AtALMT1 overexpression in blackgram (Vigna mungo L.) confers increased aluminium tolerance, Synthetic Route of 97-67-6, the main research area is acidic soil aluminum toxicity blackgram citrate malate; AtALMT1 acidic soil aluminum toxicity blackgram citrate malate; Acidic soil; aluminium toxicity; blackgram; citrate; malate.

Worldwide, 50% of soil is acidic, which induces aluminum (Al) toxicity in plants, as the phyto-availability of Al3+ increases in acidic soil. Plants responds to Al3+ toxicity by exuding organic acids into the rhizosphere. The organic acid responsible for Al3+ stress response varies from species to species, which in the case of blackgram (Vigna mungo L.) is citrate. In blackgram, an Arabidopsis malate transporter, AtALMT1, was overexpressed with the motive of inducing enhanced exudation of malate. Transgenics were generated using cotyledon node explants through Agrobacterium tumefaciens-mediated transformation. The putative transgenics were initially screened by AtALMT1-specific genomic DNA PCR, followed by quant. PCR. Two independent transgenic events were identified and functionally characterized in the T3 generation. The transgenic lines, Line 1 and 2, showed better root growth, relative water content and chlorophyll content under Al3+ stress. Both lines also accounted for less oxidative damage, due to reduced accumulation of ROS mols. Photosynthetic efficiency, as measured in terms of Fv/Fm, NPQ and Y(II), increased when compared to the wild type (WT). Relative expression of genes (VmSTOP1, VmALS3, VmMATE) responsible for Al3+ stress response in blackgram showed that overexpression of a malate transporter did not have any effect on their expression. Malate exudation increased whereas citrate exudation did not show any divergence from the WT. A pot stress assay found that the transgenics showed better adaptation to acidic soil. This report demonstrates that the overexpression of a malate transporter in a non-malate exuding species improves adaptation to Al3+ toxicity in acidic soil without effecting its stress response mechanism.

Plant Biology (Berlin, Germany) published new progress about Acid soils. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Stankova, Pavla’s team published research in International Journal of Molecular Sciences in 2020 | CAS: 97-67-6

International Journal of Molecular Sciences published new progress about Adaptation. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Stankova, Pavla published the artcileAdaptation of mitochondrial substrate flux in a mouse model of nonalcoholic fatty liver disease, Synthetic Route of 97-67-6, the main research area is mitochondrial substrate flux nonalcoholic fatty liver disease adaptation animal; mitochondria; nonalcoholic fatty liver disease; oxidative phosphorylation; respirometry.

Maladaptation of mitochondrial oxidative flux seems to be a considerable feature of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to induce NAFLD in mice fed a Western-style diet (WD) and to evaluate liver mitochondrial functions. Experiments were performed on male C57BL/6J mice fed with a control diet or a WD for 24 wk. Histol. changes in liver and adipose tissue as well as hepatic expression of fibrotic and inflammatory genes and proteins were evaluated. The mitochondrial respiration was assessed by high-resolution respirometry. Oxidative stress was evaluated by measuring lipoperoxidation, glutathione, and reactive oxygen species level. Feeding mice a WD induced adipose tissue inflammation and massive liver steatosis accompanied by mild inflammation and fibrosis. We found decreased succinate-activated mitochondrial respiration and decreased succinate dehydrogenase (SDH) activity in the mice fed a WD. The oxidative flux with other substrates was not affected. We observed increased ketogenic capacity, but no impact on the capacity for fatty acid oxidation We did not confirm the presence of oxidative stress. Mitochondria in this stage of the disease are adapted to increased substrate flux. However, inhibition of SDH can lead to the accumulation of succinate, an important signaling mol. associated with inflammation, fibrosis, and carcinogenesis.

International Journal of Molecular Sciences published new progress about Adaptation. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Huang, Lijie’s team published research in Nanomaterials in 2020 | CAS: 97-67-6

Nanomaterials published new progress about Absorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application of (S)-2-hydroxysuccinic acid.

Huang, Lijie published the artcilePreparation and properties of cassava residue cellulose nanofibril/cassava starch composite films, Application of (S)-2-hydroxysuccinic acid, the main research area is cellulose nanofibril cassava starch nanocomposite film preparation property; cassava residue; cassava starch; cellulose nanofibril; composite film; modified; nanocomposite.

Because of its non-toxic, pollution-free, and low-cost advantages, environmentally-friendly packaging is receiving widespread attention. However, using simple technol. to prepare environmentally-friendly packaging with excellent comprehensive performance is a difficult problem faced by the world. This paper reports a very simple and environmentally-friendly method. The hydroxyl groups of cellulose nanofibrils (CNFs) were modified by introducing malic acid and the silane coupling agent KH-550, and the modified CNF were added to cassava starch as a reinforcing agent to prepare film with excellent mech., hydrophobic, and barrier properties. In addition, due to the addition of malic acid and a silane coupling agent, the dispersibility and thermal stability of the modified CNFs became significantly better. By adjusting the order of adding the modifiers, the hydrophobicity of the CNFs and thermal stability were increased by 53.5% and 36.9% ± 2.7%, resp. At the same time, the addition of modified CNFs increased the tensile strength, hydrophobicity, and water vapor transmission coefficient of the starch-based composite films by 1034%, 129.4%, and 35.95%, resp. This material can be widely used in the packaging of food, cosmetics, pharmaceuticals, and medical consumables.

Nanomaterials published new progress about Absorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application of (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Craven, John’s team published research in RSC Advances in 2019 | CAS: 97-67-6

RSC Advances published new progress about Absorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Craven, John published the artcileRhodopseudomonas palustris-based conversion of organic acids to hydrogen using plasmonic nanoparticles and near-infrared light, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is organic acid hydrogen Rhodopseudomonas palustris conversion plasmonic nanoparticle.

The simultaneous elimination of organic waste and the production of clean fuels will have an immense impact on both the society and the industrial manufacturing sector. The enhanced understanding of the interface between nanoparticles and photo-responsive bacteria will further advance the knowledge of their interactions with biol. systems. Although literature shows the production of gases by photobacteria, herein, we demonstrated the integration of photonics, biol., and nanostructured plasmonic materials for hydrogen production with a lower greenhouse CO2 gas content at quantified light energy intensity and wavelength. Phototrophic purple non-sulfur bacteria were able to generate hydrogen as a byproduct of nitrogen fixation using the energy absorbed from visible and near-IR (NIR) light. This type of biol. hydrogen production has suffered from low efficiency of converting light energy into hydrogen in part due to light sources that do not exploit the organisms’ capacity for NIR absorption. We used NIR light sources and optically resonant gold-silica core-shell nanoparticles to increase the light utilization of the bacteria to convert waste organic acids such as acetic and maleic acids to hydrogen. The batch growth studies for the small cultures (40 mL) of Rhodopseudomonas palustris demonstrated >2.5-fold increase in hydrogen production when grown under an NIR source (167 ± 18μmol H2) compared to that for a broad-band light source (60 ± 6μmol H2) at equal light intensity (130 W m-2). The addition of the mPEG-coated optically resonant gold-silica core-shell nanoparticles in the solution further improved the hydrogen production from 167 ± 18 to 398 ± 108μmol H2 at 130 W m-2. The average hydrogen production rate with the nanoparticles was 127 ± 35μmol L-1 h-1 at 130 W m-2.

RSC Advances published new progress about Absorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Strubbe-Rivera, Jasiel O.’s team published research in Scientific Reports in 2021-12-31 | CAS: 97-67-6

Scientific Reports published new progress about Absorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Strubbe-Rivera, Jasiel O. published the artcileThe mitochondrial permeability transition phenomenon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is calcium overload mitochondrial permeability transition structure cryogenic electron microscopy.

Mitochondria have a remarkable ability to uptake and store massive amounts of calcium. However, the consequences of massive calcium accumulation remain enigmatic. In the present study, we analyzed a series of time-course experiments to identify the sequence of events that occur in a population of guinea pig cardiac mitochondria exposed to excessive calcium overload that cause mitochondrial permeability transition (MPT). By analyzing coincident structural and functional data, we determined that excessive calcium overload is associated with large calcium phosphate granules and inner membrane fragmentation, which explains the extent of mitochondrial dysfunction. This data also reveals a novel mechanism for cyclosporin A, an inhibitor of MPT, in which it preserves cristae despite the presence of massive calcium phosphate granules in the matrix. Overall, these findings establish a mechanism of calcium-induced mitochondrial dysfunction and the impact of calcium regulation on mitochondrial structure and function.

Scientific Reports published new progress about Absorption. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts