Tiziani, Raphael’s team published research in Scientific Reports in 2020-12-31 | CAS: 97-67-6

Scientific Reports published new progress about Cell morphology. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Tiziani, Raphael published the artcilePhosphorus deficiency changes carbon isotope fractionation and triggers exudate reacquisition in tomato plants, SDS of cas: 97-67-6, the main research area is tomato plant phosphorus deficiency carbon isotope fractionation exudate reacquisition.

Plant roots are able to exude vast amounts of metabolites into the rhizosphere in response to phosphorus (P) deficiency. Causing noteworthy costs in terms of energy and carbon (C) for the plants. Therefore, it is suggested that exudates reacquisition by roots could represent an energy saving strategy of plants. This study aimed at investigating the effect of P deficiency on the ability of hydroponically grown tomato plants to re-acquire specific compounds generally present in root exudates by using 13C-labeled mols. Results showed that P deficient tomato plants were able to take up citrate (+ 37%) and malate (+ 37%), particularly when compared to controls. While glycine (+ 42%) and fructose (+ 49%) uptake was enhanced in P shortage, glucose acquisition was not affected by the nutritional status. Unexpectedly, results also showed that P deficiency leads to a 13C enrichment in both tomato roots and shoots over time (shoots-+ 2.66‰, roots-+ 2.64‰, compared to control plants), probably due to stomata closure triggered by P deficiency. These findings highlight that tomato plants are able to take up a wide range of metabolites belonging to root exudates, thus maximizing C trade off. This trait is particularly evident when plants grew in P deficiency.

Scientific Reports published new progress about Cell morphology. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wright, JaLessa N.’s team published research in American Journal of Physiology in 2019-06-30 | CAS: 97-67-6

American Journal of Physiology published new progress about Bioaccumulation. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application of (S)-2-hydroxysuccinic acid.

Wright, JaLessa N. published the artcileAcute increases in O-GlcNAc indirectly impair mitochondrial bioenergetics through dysregulation of LonP1-mediated mitochondrial protein complex turnover, Application of (S)-2-hydroxysuccinic acid, the main research area is OGlcNAc LonP dysregulation mitochondrial protein bioenergetics; LonP1; Thiamet-G; bioenergetics; mitochondria; protein -GlcNAcylation; protein turnover.

The attachment of O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins in distinct cellular compartments is increasingly recognized as an important mechanism regulating cellular function. Importantly, the O-GlcNAc modification of mitochondrial proteins has been identified as a potential mechanism to modulate metabolism under stress with both potentially beneficial and detrimental effects. This suggests that temporal and dose-dependent changes in O-GlcNAcylation may have different effects on mitochondrial function. In the current study, we found that acutely augmenting O-GlcNAc levels by inhibiting O-GlcNAcase with Thiamet-G for up to 6 h resulted in a time-dependent decrease in cellular bioenergetics and decreased mitochondrial complex I, II, and IV activities. Under these conditions, mitochondrial number was unchanged, whereas an increase in the protein levels of the subunits of several electron transport complex proteins was observed However, the observed bioenergetic changes appeared not to be due to direct increased O-GlcNAc modification of complex subunit proteins. Increases in O-GlcNAc were also associated with an accumulation of mitochondrial ubiquitinated proteins; phosphatase and tensin homolog induced kinase 1 (PINK1) and p62 protein levels were also significantly increased. Interestingly, the increase in O-GlcNAc levels was associated with a decrease in the protein levels of the mitochondrial Lon protease homolog 1 (LonP1), which is known to target complex IV subunits and PINK1, in addition to other mitochondrial proteins. These data suggest that impaired bioenergetics associated with short-term increases in O-GlcNAc levels could be due to impaired, LonP1-dependent, mitochondrial complex protein turnover.

American Journal of Physiology published new progress about Bioaccumulation. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application of (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zou, Kai’s team published research in International Journal of Obesity in 2019-04-30 | CAS: 97-67-6

International Journal of Obesity published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Related Products of alcohols-buliding-blocks.

Zou, Kai published the artcileAltered tricarboxylic acid cycle flux in primary myotubes from severely obese humans, Related Products of alcohols-buliding-blocks, the main research area is severe obesity primary myotube tricarboxylic acid cycle flux glucose.

Background/objective: The partitioning of glucose toward glycolytic end products rather than glucose oxidation and glycogen storage is evident in skeletal muscle with severe obesity and type 2 diabetes. The purpose of the present study was to determine the possible mechanism by which severe obesity alters insulin-mediated glucose partitioning in human skeletal muscle. Subjects/methods: Primary human skeletal muscle cells (HSkMC) were isolated from lean (BMI = 23.6 ± 2.6 kg/m2, n = 9) and severely obese (BMI = 48.8 ± 1.9 kg/m2, n = 8) female subjects. Glucose oxidation, glycogen synthesis, non-oxidized glycolysis, pyruvate oxidation, and targeted TCA cycle metabolomics were examined in differentiated myotubes under basal and insulin-stimulated conditions. Results: Myotubes derived from severely obese subjects exhibited attenuated response of glycogen synthesis (20.3%; 95% CI [4.7, 28.8]; P = 0.017) and glucose oxidation (5.6%; 95% CI [0.3, 8.6]; P = 0.046) with a concomitant greater increase (23.8%; 95% CI [5.7, 47.8]; P = 0.004) in non-oxidized glycolytic end products with insulin stimulation in comparison to the lean group (34.2% [24.9, 45.1]; 13.1% [8.6, 16.4], and 2.9% [-4.1, 12.2], resp.). These obesity-related alterations in glucose partitioning appeared to be linked with reduced TCA cycle flux, as 2-[14C]-pyruvate oxidation (358.4 pmol/mg protein/min [303.7, 432.9] vs. lean 439.2 pmol/mg protein/min [393.6, 463.1]; P = 0.013) along with several TCA cycle intermediates, were suppressed in the skeletal muscle of severely obese individuals. Conclusions: These data suggest that with severe obesity the partitioning of glucose toward anaerobic glycolysis in response to insulin is a resilient characteristic of human skeletal muscle. This altered glucose partitioning appeared to be due, at least in part, to a reduction in TCA cycle flux.

International Journal of Obesity published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Related Products of alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fisher, Gordon’s team published research in Physiological Reports in 2021-10-31 | CAS: 97-67-6

Physiological Reports published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Related Products of alcohols-buliding-blocks.

Fisher, Gordon published the artcileSex and race contribute to variation in mitochondrial function and insulin sensitivity, Related Products of alcohols-buliding-blocks, the main research area is skeletal muscle myofiber insulin hydrogen peroxide; insulin sensitivity; mitochondrial function; race; reactive oxygen species; sex.

Insulin sensitivity is lower in African American (AA) vs. Caucasian American (CA). We tested the hypothesis that lower insulin sensitivity in AA could be explained by mitochondrial respiratory rates, coupling efficiency, myofiber composition, or H2O2 emission. A secondary aim was to determine whether sex affected the results. AA and CA men and women, 19-45 years, BMI 17-43 kg m2, were assessed for insulin sensitivity (SIClamp) using a euglycemic clamp at 120 mU/m2/min, muscle mitochondrial function using high-resolution respirometry, H2O2 emission using amplex red, and % myofiber composition SIClamp was greater in CA (p < 0.01) and women (p < 0.01). Proportion of type I myofibers was lower in AA (p < 0.01). Mitochondrial respiratory rates, coupling efficiency, and H2O2 production did not differ with race. Mitochondrial function was pos. associated with insulin sensitivity in women but not men. Statistical adjustment for mitochondrial function, H2O2 production, or fiber composition did not eliminate the race difference in SIClamp. Neither mitochondrial respiratory rates, coupling efficiency, myofiber composition, nor mitochondrial reactive oxygen species production explained lower SIClamp in AA compared to CA. The source of lower insulin sensitivity in AA may be due to other aspects of skeletal muscle that have yet to be identified. Physiological Reports published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Related Products of alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lewis, Matthew T.’s team published research in American Journal of Physiology in 2019-08-31 | CAS: 97-67-6

American Journal of Physiology published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Category: alcohols-buliding-blocks.

Lewis, Matthew T. published the artcileSkeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes, Category: alcohols-buliding-blocks, the main research area is type 2 diabetes skeletal muscle energetic contraction; hyperglycemia; inactivity; insulin resistance; mitochondrial oxidative phosphorylation; obesity.

Type 2 diabetes (T2D) presents with hyperglycemia and insulin resistance, affecting over 30 million people in the United States alone. Previous work has hypothesized that mitochondria are dysfunctional in T2D and results in both reduced ATP production and glucose disposal. However, a direct link between mitochondrial function and T2D has not been determined In the current study, the Goto-Kakizaki (GK) rat model of T2D was used to quantify mitochondrial function in vitro and in vivo over a broad range of contraction-induced metabolic workloads. During high-frequency sciatic nerve stimulation, hindlimb muscle contractions at 2- and 4-Hz intensities, the GK rat failed to maintain similar bioenergetic steady states to Wistar control (WC) rats measured by phosphorus magnetic resonance spectroscopy, despite similar force production Mitochondria isolated from muscles of GK and WC rats also showed no difference in mitochondrial ATP production capacity in vitro, measured by high-resolution respirometry. At lower intensities (0.25-1 Hz) there were no detectable differences between GK and WC rats in sustained energy balance. There were similar phosphocreatine concentrations during steady-state contraction and postcontractile recovery (τ = 72 ± 6 s GK vs. 71 ± 2 s WC). Taken together, these results suggest that deficiencies in skeletal muscle energetics seen at higher intensities are not due to mitochondrial dysfunction in the GK rat.

American Journal of Physiology published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zou, Kai’s team published research in American Journal of Physiology in 2020-12-31 | CAS: 97-67-6

American Journal of Physiology published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Computed Properties of 97-67-6.

Zou, Kai published the artcileImpaired glucose partitioning in primary myotubes from severely obese women with type 2 diabetes, Computed Properties of 97-67-6, the main research area is glucose myotube obese women type two diabetes; TCA cycle; glucose oxidation; glycogen synthesis; glycolysis; human skeletal muscle cell; pyruvate dehydrogenase.

The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals (P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate (P < 0.05), cis-aconitic acid (P = 0.07), and α-ketoglutarate (P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes. American Journal of Physiology published new progress about Body mass index. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Computed Properties of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barros, Kallyne A.’s team published research in Plant, Cell & Environment in 2020 | CAS: 97-67-6

Plant, Cell & Environment published new progress about Apical meristem. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Safety of (S)-2-hydroxysuccinic acid.

Barros, Kallyne A. published the artcileDiurnal patterns of growth and transient reserves of sink and source tissues are affected by cold nights in barley, Safety of (S)-2-hydroxysuccinic acid, the main research area is Hordeum diurnal pattern growth cold night malate carbon; EARLY FLOWERING 3; barley growth; carbon metabolism; circadian clock; cold; diurnal metabolism; fructans; malate; starch; sucrose.

Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50-60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24-28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.

Plant, Cell & Environment published new progress about Apical meristem. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Safety of (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gerber, Lucie’s team published research in Scientific Reports in 2020-12-31 | CAS: 97-67-6

Scientific Reports published new progress about Atlantic salmon. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application In Synthesis of 97-67-6.

Gerber, Lucie published the artcileImproved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial ‘ceiling’, Application In Synthesis of 97-67-6, the main research area is reactive oxygen species oxidative stress energy metabolism Salmo.

Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20°C, then measured cardiac mitochondrial functionality and integrity at 20°C and at 24, 26 and 28°C (this species’ critical thermal maximum ± 2°C). Acclimation to 20°C vs. 12°C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24°C, and preserved outer mitochondrial membrane integrity up to 26°C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures These data suggest that salmon acclimated to ‘normal’ maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no ‘tradeoff’ in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.

Scientific Reports published new progress about Atlantic salmon. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application In Synthesis of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zorrilla, Francisco’s team published research in Nucleic Acids Research in 2021 | CAS: 97-67-6

Nucleic Acids Research published new progress about Bifidobacterium. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Zorrilla, Francisco published the artcileThe metaGEM: reconstruction of genome scale metabolic models directly from metagenomes, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is metaGEM genome scale metabolic model metagenome.

Metagenomic analyses of microbial communities have revealed a large degree of interspecies and intraspecies genetic diversity through the reconstruction of metagenome assembled genomes (MAGs). Yet, metabolic modeling efforts mainly rely on reference genomes as the starting point for reconstruction and simulation of genome scale metabolic models (GEMs), neglecting the immense intra- and interspecies diversity present in microbial communities. Here, we present metaGEM (https://github.com/ franciscozorrilla/metaGEM), an end-to-end pipeline enabling metabolic modeling of multi-species communities directly from metagenomes. The pipeline automates all steps from the extraction of contextspecific prokaryotic GEMs from MAGs to community level flux balance anal. (FBA) simulations. To demonstrate the capabilities of metaGEM, we analyzed 483 samples spanning lab culture, human gut, plant-associated, soil, and ocean metagenomes, reconstructing over 14,000 GEMs. We show that GEMs reconstructed from metagenomes have fully representedmetabolism comparable to isolated genomes. We demonstrate that metagenomic GEMs capture intraspecies metabolic diversity and identify potential differences in the progression of type 2 diabetes at the level of gut bacterial metabolic exchanges. Overall, metaGEM enables FBA-readymetabolic model reconstruction directly from metagenomes, provides a resource of metabolic models, and showcases community-level modeling of microbiomes associated with disease conditions allowing generation of mechanistic hypotheses.

Nucleic Acids Research published new progress about Bifidobacterium. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Erkang’s team published research in Biomedical Optics Express in 2022 | CAS: 97-67-6

Biomedical Optics Express published new progress about Flash photolysis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Category: alcohols-buliding-blocks.

Wang, Erkang published the artcileTransient absorption spectroscopy and imaging of redox in muscle mitochondria, Category: alcohols-buliding-blocks, the main research area is muscle mitochondria imaging transient absorption spectroscopy.

Mitochondrial redox is an important indicator of cell metabolism and health, with implications in cancer, diabetes, aging, neurodegenerative diseases, and mitochondrial disease. The most common method to observe redox of individual cells and mitochondria is through fluorescence of NADH and FAD+, endogenous cofactors serve as electron transport inputs to the mitochondrial respiratory chain. Yet this leaves out redox within the respiratory chain itself. To a degree, the missing information can be filled in by exogenous fluorophores, but at the risk of disturbed mitochondrial permeability and respiration. Here we show that variations in respiratory chain redox can be detected up by visible-wavelength transient absorption microscopy (TAM). In TAM, the selection of pump and probe wavelengths can provide multiphoton imaging contrast between non-fluorescent mols. Here, we applied TAM with a pump at 520nm and probe at 450nm, 490nm, and 620nm to elicit redox contrast from mitochondrial respiratory chain hemeproteins. Experiments were performed with reduced and oxidized preparations of isolated mitochondria and whole muscle fibers, using mitochondrial fuels (malate, pyruvate, and succinate) to set up physiol. relevant oxidation levels. TAM images of muscle fibers were analyzed with multivariate curve resolution (MCR), revealing that the response at 620nm probe provides the best redox contrast and the most consistent response between whole cells and isolated mitochondria.

Biomedical Optics Express published new progress about Flash photolysis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts