Wang, Guan’s team published research in Biochemical Engineering Journal in 2019-06-15 | CAS: 97-67-6

Biochemical Engineering Journal published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Name: (S)-2-hydroxysuccinic acid.

Wang, Guan published the artcileQuantitative metabolomics and metabolic flux analysis reveal impact of altered trehalose metabolism on metabolic phenotypes of Penicillium chrysogenum in aerobic glucose-limited chemostats, Name: (S)-2-hydroxysuccinic acid, the main research area is Penicillium trehalose metabolism aerobic glucose chemostat metabolomics.

In Penicillium chrysogenum, it has been observed that turnover of storage carbohydrates (trehalose, mannitol, arabitol, erythritol and glycogen) resulting in an extra ATP expenditure might partly account for the reduced penicillin productivity under dynamic cultivation conditions. In this work, Penicillium chrysogenum mutants with altered trehalose metabolism were constructed using the Agrobacterium-mediated transformation method. It was observed that impaired trehalose biosynthesis did not result in growth arrest and change of glucose sensitivity to high glucose levels, but neg. influenced the sporulation. Compared with the original strain, in glucose-limited chemostat cultures, the biomass yield on glucose and energy efficiency were slightly enhanced; however, the penicillin productivity was significantly lowered in the trehalose mutant strains. Comparison with a high-yielding P. chrysogenum strain revealed that the original and mutant strains had a lower glucose uptake capacity but higher intracellular levels of free amino acids. Flux estimates through the central carbon metabolism showed distinctive difference in the upper part of the glycolysis and in the pentose phosphate pathway but comparable flux through the TCA cycle. Combining, the striking phenotypic effects observed in the trehalose mutants of P. chrysogenum indicated that trehalose metabolism plays an important role in metabolic regulation and is central to maintaining higher penicillin productivity under glucose-limited chemostat cultures.

Biochemical Engineering Journal published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Name: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Malheiros, Rafael S. P.’s team published research in Ecotoxicology and Environmental Safety in 2020-02-29 | CAS: 97-67-6

Ecotoxicology and Environmental Safety published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Formula: C4H6O5.

Malheiros, Rafael S. P. published the artcileSelenomethionine induces oxidative stress and modifies growth in rice (Oryza sativa L.) seedlings through effects on hormone biosynthesis and primary metabolism, Formula: C4H6O5, the main research area is Oryza selenomethionine oxidative stress seedling hormone biosynthesis; Growth inhibition; Hormonal regulation; Primary metabolism; Reactive oxygen species; Selenium.

Although the chem. characteristics of selenomethionine (SeMet) are similar to those of methionine (Met), the physiol. activity of SeMet apparently differs in its ability to stimulate ethylene production in plant tissues. Since selenium alters root architecture of rice seedlings by modifying ethylene production, the investigation of the effect of SeMet and Met on rice growth would be a step forward towards unraveling factors that underlie selenium toxicity. Here, we report that SeMet increased concentrations of reactive oxygen species (ROS), inhibiting auxin and increasing ethylene production in rice seedlings. The effect of SeMet on seedlings was mediated by the inhibition of the abundance of transcripts encoding auxin transport and cell expansion proteins. Moreover, SeMet led to increased seedling respiration, which was pos. correlated with organic acids consumption, but neg. with sugars consumption, thereby decreasing seedling growth. In contrast with SeMet treatment, Met did not affect ROS production, hormone biosynthesis and seedling growth, indicating an exclusive selenium effect. The singlet oxygen scavenger, 1,4-diazabicyclooctane, overrode the repressive effect of SeMet in seedling growth. Our results demonstrate a phytotoxic effect of SeMet for rice seedlings and reveal a relationship between reactive oxygen species, hormone homeostasis and carbon availability, which regulates growth responses.

Ecotoxicology and Environmental Safety published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Formula: C4H6O5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xu, Xin’s team published research in Applied Microbiology and Biotechnology in 2019-01-31 | CAS: 97-67-6

Applied Microbiology and Biotechnology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Product Details of C4H6O5.

Xu, Xin published the artcileReverse metabolic engineering in lager yeast: impact of the NADH/NAD+ ratio on acetaldehyde production during the brewing process, Product Details of C4H6O5, the main research area is reverse metabolic engineering acetaldehyde NADH NAD brewing yeast; Acetaldehyde; Brewer’s yeast; NADH/NAD+; Reverse metabolic engineering.

Acetaldehyde is synthesized by yeast during the main fermentation period of beer production, which causes an unpleasant off-flavor. Therefore, there has been extensive effort toward reducing acetaldehyde to obtain a beer product with better flavor and anti-staling ability. In this study, we discovered that acetaldehyde production in beer brewing is closely related with the intracellular NADH equivalent regulated by the citric acid cycle. However, there was no significant relationship between acetaldehyde production and amino acid metabolism A reverse engineering strategy to increase the intracellular NADH/NAD+ ratio reduced the final acetaldehyde production level, and vice versa. This work offers new insight into acetaldehyde metabolism and further provides efficient strategies for reducing acetaldehyde production by the regulating the intracellular NADH/NAD+ ratio through cofactor engineering.

Applied Microbiology and Biotechnology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Product Details of C4H6O5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Zixuan’s team published research in Frontiers in Chemistry (Lausanne, Switzerland) in 2021 | CAS: 97-67-6

Frontiers in Chemistry (Lausanne, Switzerland) published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Wang, Zixuan published the artcileRatiometric mass spectrometry imaging for stain-free delineation of ischemic tissue and spatial profiling of ischemia-related molecular signatures, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is ischemia metabolic dysfunction metabolomics ratiometric mass spectrometry imaging; TCA cycle; ischemia; mass spectrometry imaging; metabolic enzyme; ratiometric analysis.

Mass spectrometry imaging (MSI) serves as an emerging tool for spatial profiling of metabolic dysfunction in ischemic tissue. Prior to MSI data anal., commonly used staining methods, e.g., triphenyltetrazole chloride (TTC) staining, need to be implemented on the adjacent tissue for delineating lesion area and evaluating infarction, resulting in extra consumption of the tissue sample as well as morphol. mismatch. Here, we propose an in situ ratiometric MSI method for simultaneous demarcation of lesion border and spatial annotation of metabolic and enzymic signatures in ischemic tissue on identical tissue sections. In this method, the ion abundance ratio of a reactant pair in the TCA cycle, e.g., fumarate to malate, is extracted pixel-by-pixel from an ambient MSI dataset of ischemic tissue and used as a surrogate indicator for metabolic activity of mitochondria to delineate lesion area as if the tissue has been chem. stained. This method is shown to be precise and robust in identifying lesions in brain tissues and tissue samples from different ischemic models including heart, liver, and kidney. Furthermore, the proposed method allows screening and predicting metabolic and enzymic alterations which are related to mitochondrial dysfunction. Being capable of concurrent lesion identification, in situ metabolomics anal., and screening of enzymic alterations, the ratiometric MSI method bears great potential to explore ischemic damages at both metabolic and enzymic levels in biol. research.

Frontiers in Chemistry (Lausanne, Switzerland) published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Puchalska, Patrycja’s team published research in Cell Metabolism in 2019-02-05 | CAS: 97-67-6

Cell Metabolism published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, COA of Formula: C4H6O5.

Puchalska, Patrycja published the artcileHepatocyte-Macrophage Acetoacetate Shuttle Protects against Tissue Fibrosis, COA of Formula: C4H6O5, the main research area is liver fibrosis hepatocyte macrophage acetoacetate TCA cycle mitochondrial metabolism; acetoacetate; beta-hydroxybutyrate; fibrosis; immunometabolism; ketone bodies; macrophages; nonalcoholic fatty liver disease; stable isotope tracing untargeted metabolomics.

Metabolic plasticity has been linked to polarized macrophage function, but mechanisms connecting specific fuels to tissue macrophage function remain unresolved. Here we apply a stable isotope tracing, mass spectrometry-based untargeted metabolomics approach to reveal the metabolome penetrated by hepatocyte-derived glucose and ketone bodies. In both classically and alternatively polarized macrophages, [13C]acetoacetate (AcAc) labeled ∼200 chem. features, but its reduced form D-[13C]β-hydroxybutyrate (D-βOHB) labeled almost none. [13C]glucose labeled ∼500 features, and while unlabeled AcAc competed with only ∼15% of them, the vast majority required the mitochondrial enzyme succinyl-CoA-oxoacid transferase (SCOT). AcAc carbon labeled metabolites within the cytoplasmic glycosaminoglycan pathway, which regulates tissue fibrogenesis. Accordingly, livers of mice lacking SCOT in macrophages were predisposed to accelerated fibrogenesis. Exogenous AcAc, but not D-βOHB, ameliorated diet-induced hepatic fibrosis. These data support a hepatocyte-macrophage ketone shuttle that segregates AcAc from D-βOHB, coordinating the fibrogenic response to hepatic injury via mitochondrial metabolism in tissue macrophages.

Cell Metabolism published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, COA of Formula: C4H6O5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Knapp-Wilson, Amber’s team published research in Journal of Cell Science in 2021-07-31 | CAS: 97-67-6

Journal of Cell Science published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Knapp-Wilson, Amber published the artcileMaintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health in collection: mitochondria Amber Knapp-Wilson, SDS of cas: 97-67-6, the main research area is complexI NDUF11 mitochondrial structure health collection; Caenorhabditis elegans ; Cryo-electron tomography; Electron transfer chain; Mitochondria; Mitochondrial ultrastructure; NDUF-11; Respirasome; Respiration; Supercomplexes; Worm.

Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homolog of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterization of the consequences: destabilization of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production Cryo-electron tomog. highlighted aberrant morphol. of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphol. and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease.

Journal of Cell Science published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Vakrou, Styliani’s team published research in Scientific Reports in 2021-12-31 | CAS: 97-67-6

Scientific Reports published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Related Products of alcohols-buliding-blocks.

Vakrou, Styliani published the artcileDifferences in molecular phenotype in mouse and human hypertrophic cardiomyopathy, Related Products of alcohols-buliding-blocks, the main research area is human hypertrophic cardiomyopathy mouse mol phenotype difference.

Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity. We investigated the mol. basis of the cardiac phenotype in two mouse models at established disease stage (mouse-HCM), and human myectomy tissue (human-HCM). We analyzed the transcriptome in 2 mouse models with non-obstructive HCM (R403Q-MyHC, R92W-TnT)/littermate-control hearts at 24 wk of age, and in myectomy tissue of patients with obstructive HCM/control hearts (GSE36961, GSE36946). Addnl., we examined myocyte redox, cardiac mitochondrial DNA copy number (mtDNA-CN), mt-respiration, mt-ROS generation/scavenging and mt-Ca2+ handling in mice. We identified distinct allele-specific gene expression in mouse-HCM, and marked differences between mouse-HCM and human-HCM. Only two genes (CASQ1, GPT1) were similarly dysregulated in both mutant mice and human-HCM. No signaling pathway or transcription factor was predicted to be similarly dysregulated (by Ingenuity Pathway Anal.) in both mutant mice and human-HCM. Losartan was a predicted therapy only in TnT-mutant mice. KEGG pathway anal. revealed enrichment for several metabolic pathways, but only pyruvate metabolism was enriched in both mutant mice and human-HCM. Both mutant mouse myocytes demonstrated evidence of an oxidized redox environment. Mitochondrial complex I RCR was lower in both mutant mice compared to controls. MyHC-mutant mice had similar mtDNA-CN and mt-Ca2+ handling, but TnT-mutant mice exhibited lower mtDNA-CN and impaired mt-Ca2+ handling, compared to littermate-controls. Mol. profiling reveals differences in gene expression, transcriptional regulation, intracellular signaling and mt-number/function in 2 mouse models at established disease stage. Further studies are needed to confirm differences in gene expression between mouse and human-HCM, and to examine whether cardiac phenotype, genotype and/or species differences underlie the divergence in mol. profiles.

Scientific Reports published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Related Products of alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

de Avila Silva, Lucas’s team published research in Plant and Cell Physiology in 2019 | CAS: 97-67-6

Plant and Cell Physiology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

de Avila Silva, Lucas published the artcileSource strength modulates fruit set by starch turnover and export of both sucrose and amino acids in pepper, Synthetic Route of 97-67-6, the main research area is Capsicum source strength fruit starch turnover sucrose amino acid; Flowers; Metabolism; Nitrogen; Pepper; Shade; Yield.

Fruit set is an important yield-related parameter, which varies drastically due to genetic and environmental factors. Here, two com. cultivars of Capsicum chinense (Biquinho and Habanero) were evaluated in response to light intensity (unshaded and shaded) and N supply (deficiency and sufficiency) to understand the role of source strength on fruit set at the metabolic level. We assessed the metabolic balance of primary metabolites in source leaves during the flowering period. Furthermore, we investigated the metabolic balance of the same metabolites in flowers to gain more insights into their influence on fruit set. Genotype and N supply had a strong effect on fruit set and the levels of primary metabolites, whereas light intensity had a moderate effect. Higher fruit set was mainly related to the export of both sucrose and amino acids from source leaves to flowers. Addnl., starch turnover in source leaves, but not in flowers, had a central role on the sucrose supply to sink organs at night. In flowers, our results not only confirmed the role of the daily supply of carbohydrates on fruit set but also indicated a potential role of the balance of amino acids and malate.

Plant and Cell Physiology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sampson, Connor D. D.’s team published research in Biochemical Journal in 2021-11-30 | CAS: 97-67-6

Biochemical Journal published new progress about Cardiolipins Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Sampson, Connor D. D. published the artcileThermostability-based binding assays reveal complex interplay of cation, substrate and lipid binding in the bacterial DASS transporter, VcINDY, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is thermostability cation lipid binding DASS transporter; lipids; membrane proteins; membranes; molecular interactions; transport.

The divalent anion sodium symporter (DASS) family of transporters (SLC13 family in humans) are key regulators of metabolic homeostasis, disruption of which results in protection from diabetes and obesity, and inhibition of liver cancer cell proliferation. Thus, DASS transporter inhibitors are attractive targets in the treatment of chronic, age-related metabolic diseases. The characterization of several DASS transporters has revealed variation in the substrate selectivity and flexibility in the coupling ion used to power transport. Here, using the model DASS co-transporter, VcINDY from Vibrio cholerae, we have examined the interplay of the three major interactions that occur during transport: the coupling ion, the substrate, and the lipid environment. Using a series of high-throughput thermostability-based interaction assays, we have shown that substrate binding is Na+-dependent; a requirement that is orchestrated through a combination of electrostatic attraction and Na+-induced priming of the binding site architecture. We have identified novel DASS ligands and revealed that ligand binding is dominated by the requirement of two carboxylate groups in the ligand that are precisely distanced to satisfy carboxylate interaction regions of the substrate-binding site. We have also identified a complex relationship between substrate and lipid interactions, which suggests a dynamic, regulatory role for lipids in VcINDY′s transport cycle.

Biochemical Journal published new progress about Cardiolipins Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hogewoning, Sander W.’s team published research in Plant, Cell & Environment in 2021 | CAS: 97-67-6

Plant, Cell & Environment published new progress about Chlorophylls Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Hogewoning, Sander W. published the artcileCAM-physiology and carbon gain of the orchid Phalaenopsis in response to light intensity, light integral and carbon dioxide, SDS of cas: 97-67-6, the main research area is orchid Phalaenopsis light intensity carbon dioxide; Rubisco; citrate; crassulacean acid metabolism; malate; phosphoenolpyruvate carboxylase (PEPC).

The regulation of photosynthesis and carbon gain of crassulacean acid metabolism (CAM) plants has not yet been disclosed to the extent of C3-plants. In this study, the tropical epiphyte Phalaenopsis cv. “”Sacramento”” was subjected to different lighting regimes. Photosynthesis and biochem. measuring techniques were used to address four specific questions: (1) the response of malate decarboxylation to light intensity, (2) the malate carboxylation pathway in phase IV, (3) the response of diel carbon gain to the light integral and (4) the response of diel carbon gain to CO2. The four CAM-phases were clearly discernable. The length of phase III and the malate decarboxylation rate responded directly to light intensity. In phase IV, CO2 was initially mainly carboxylated via Rubisco. However, at daylength of 16 h, specifically beyond ±12 h, it was mainly phosphoenolpyruvate carboxylase (PEP-C) carboxylating CO2. Diel carbon gain appeared to be controlled by the light integral during phase III rather than the total daily light integral. Elevated CO2 further enhanced carbon gain both in phase IV and phase I. This establishes that neither malate storage capacity, nor availability of PEP as substrate for nocturnal CO2 carboxylation were limiting factors for carbon gain enhancement. These results advance our understanding of CAM-plants and are also of practical importance for growers.

Plant, Cell & Environment published new progress about Chlorophylls Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, SDS of cas: 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts