Palkowitz, Maximilian D. team published research in Organic Letters in 2017 | 141699-55-0

COA of Formula: C8H15NO3, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. COA of Formula: C8H15NO3

Palkowitz, Maximilian D.;Tan, Bo;Hu, Haitao;Roth, Kenneth;Bauer, Renato A. research published 《 Synthesis of Diverse N-Acryloyl Azetidines and Evaluation of Their Enhanced Thiol Reactivities》, the research content is summarized as follows. Acyl azetidines exhibit nonplanar hybridization, leading to lower amide-like character of the corresponding (O)C-N bonds. This impacts N-acryloyl azetidines by producing enhanced electrophilicy at appended Michael acceptors. Herein, reactivity data are reported in the presence of glutathione (GSH) in phosphate buffer (pH 7.4) at 37 °C. Wide reactivity ranges are observed by varying substitution at the Michael acceptor or by modulating the electron-withdrawing character of substituents at the C3 position of the azetidine.

COA of Formula: C8H15NO3, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Noguchi, Tetsuji team published research in Chemical & Pharmaceutical Bulletin in 2006 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Formula: C8H15NO3

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Formula: C8H15NO3

Noguchi, Tetsuji;Tanaka, Naoki;Nishimata, Toyoki;Goto, Riki;Hayakawa, Miho;Sugidachi, Atsuhiro;Ogawa, Taketoshi;Asai, Fumitoshi;Matsui, Yumi;Fujimoto, Koichi research published 《 Indoline derivatives. Synthesis and factor Xa (FXa) inhibitory activities》, the research content is summarized as follows. A series of bisamidine derivatives each having a ring structure in the center of the mol. was synthesized and their Factor Xa (FXa) inhibitory activities were evaluated. Among them, some indoline derivatives showed potent inhibitory activities in vitro. In particular, compound (I) having an (R)-configuration at the 2-position of the indoline ring exhibited the most potent FXa inhibitory activity in vitro, more potent than DX-9065a. Furthermore, I exhibited more potent anticoagulant activity than DX-9065a. The authors also succeeded in obtaining an x-ray crystal structure of FXa bound with I.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Formula: C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Nguyen, William team published research in European Journal of Medicinal Chemistry in 2020 | 141699-55-0

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 141699-55-0

Nguyen, William;Jacobson, Jonathan;Jarman, Kate E.;Blackmore, Timothy R.;Sabroux, Helene Jousset;Lewin, Sharon R.;Purcell, Damian F.;Sleebs, Brad E. research published 《 Optimization of 5-substituted thiazolyl ureas and 6-substituted imidazopyridines as potential HIV-1 latency reversing agents》, the research content is summarized as follows. Here, two strategies to further improve the activation of viral gene expression and physicochem. properties of this class was implemented. Firstly, rigidification of the central oxy-carbon linker with a variety of saturated heterocycles and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety was explored. The optimization process afforded lead compounds, imidazopyridine derivatives such as I from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The imidazopyridine derivatives from each class demonstrated potent activation of HIV gene expression in the FlpIn. FM HEK293 cellular assay (both with LTR EC50s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM resp.), but consequently activated gene expression non-specifically in the FlpIn. FM HEK293 cellular assay (CMV EC50 70 and 270 nM resp.) manifesting in cellular cytotoxicity. The lead compounds had potential for further development as novel latency reversing agents.

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mikus, Malte S. team published research in Advanced Synthesis & Catalysis in 2020 | 141699-55-0

Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Mikus, Malte S.;Sanchez, Carina;Fridrich, Cary;Larrow, Jay F. research published 《 Palladium Catalyzed C-O Coupling of Amino Alcohols for the Synthesis of Aryl Ethers》, the research content is summarized as follows. Amine containing aryl ethers are common pharmacophore motifs that continue to emerge from drug discovery efforts. As amino alcs. are readily available building blocks, practical methodologies for incorporating them into more complex structures are highly desirable. We report our efforts to explore the application of Pd-catalyzed C-O coupling methods to the arylation of 1,2- and 1,3-amino alcs. [e.g., 1-bromo-4-(trifluoromethyl)benzene + amino alc. III (82%, 68% isolated)]. We established general and reliable conditions, under which we explored the scope and limitations of the transformation. The insights gained have been valuable in employing this methodol. within a fast-moving drug discovery environment, which we anticipate will be of general interest to the synthesis and catalysis communities.

Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

McDonald, Richard I. team published research in Journal of the American Chemical Society in 2010 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Name: tert-Butyl 3-hydroxyazetidine-1-carboxylate

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Name: tert-Butyl 3-hydroxyazetidine-1-carboxylate

McDonald, Richard I.;Wong, Gene W.;Neupane, Ram P.;Stahl, Shannon S.;Landis, Clark R. research published 《 Enantioselective Hydroformylation of N-Vinyl Carboxamides, Allyl Carbamates, and Allyl Ethers Using Chiral Diazaphospholane Ligands》, the research content is summarized as follows. Rhodium complexes of diazaphospholane ligands catalyze the asym. hydroformylation of N-vinyl carboxamides, allyl ethers, and allyl carbamates; products include 1,2- and 1,3-aminoaldehydes and 1,3-alkoxyaldehydes. Using glass pressure bottles, short reaction times (generally less than 6 h), and low catalyst loading (commonly 0.5 mol %), 20 substrates are successfully converted to chiral aldehydes with useful regioselectivity and high enantioselectivity (up to 99% ee). Chiral Roche aldehyde is obtained with 97% ee from the hydroformylation of allyl silyl ethers. Commonly difficult substrates such as 1,1- and 1,2-disubstituted alkenes undergo effective hydroformylation with 89-97% ee and complete conversion for six examples. Palladium-catalyzed aerobic oxidative amination of allyl benzyl ether followed by enantioselective hydroformylation yields the β3-aminoaldehyde with 74% ee.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Name: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

McDermott, Lee A. team published research in Bioorganic & Medicinal Chemistry in 2016 | 141699-55-0

Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 141699-55-0, formula is C8H15NO3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate

McDermott, Lee A.;Iyer, Prema;Vernetti, Larry;Rimer, Shawn;Sun, Jingran;Boby, Melissa;Yang, Tianyi;Fioravanti, Michael;O’Neill, Jason;Wang, Liwei;Drakes, Dylan;Katt, William;Huang, Qingqiu;Cerione, Richard research published 《 Design and evaluation of novel glutaminase inhibitors》, the research content is summarized as follows. A novel set of GAC (kidney glutaminase isoform C) inhibitors able to inhibit the enzymic activity of GAC and the growth of the triple neg. MDA-MB-231 breast cancer cells with low nanomolar potency is described. Compounds in this series have a reduced number of rotatable bonds, improved C log Ps, microsomal stability and ligand efficiency when compared to the leading GAC inhibitors BPTES and CB-839. Property improvements were achieved by the replacement of the flexible n-diethylthio or the Bu moiety present in the leading inhibitors by heteroatom substituted heterocycloalkanes.

Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Malamas, Michael S. team published research in Bioorganic & Medicinal Chemistry in 2020 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Product Details of C8H15NO3

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C8H15NO3

Malamas, Michael S.;Farah, Shrouq I.;Lamani, Manjunath;Pelekoudas, Dimitrios N.;Perry, Nicholas Thomas;Rajarshi, Girija;Miyabe, Christina Yume;Chandrashekhar, Honrao;West, Jay;Pavlopoulos, Spiro;Makriyannis, Alexandros research published 《 Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors》, the research content is summarized as follows. N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Addnl., we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory mol. pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by mol. modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacol. tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Product Details of C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Yongfu team published research in Journal of Medicinal Chemistry in 2020 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application In Synthesis of 141699-55-0

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Application In Synthesis of 141699-55-0

Liu, Yongfu;Wu, Jun;Zhou, Mingwei;Chen, Wenming;Li, Dongbo;Wang, Zhanguo;Hornsperger, Benoit;Aebi, Johannes D.;Marki, Hans-Peter;Kuhn, Bernd;Wang, Lisha;Kuglstatter, Andreas;Benz, Jorg;Muller, Stephan;Hochstrasser, Remo;Ottaviani, Giorgio;Xin, Jian;Kirchner, Stephan;Mohr, Susanne;Verry, Philippe;Riboulet, William;Shen, Hong C.;Mayweg, Alexander V.;Amrein, Kurt;Tan, Xuefei research published 《 Discovery of 3-Pyridyl Isoindolin-1-one Derivatives as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors》, the research content is summarized as follows. Aldosterone synthase (CYP11B2) inhibitors have been explored in recent years as an alternative therapeutic option to mineralocorticoid receptor (MR) antagonists to reduce elevated aldosterone levels, which are associated with deleterious effects on various organ systems including the heart, vasculature, kidney, and central nervous system (CNS). A benzamide pyridine hit derived from a focused screen was successfully developed into a series of potent and selective 3-pyridyl isoindolin-1-ones CYP11B2 inhibitors. Our systematic structure-activity relationship study enabled us to identify unique structural features that result in high selectivity against the closely homologous cortisol synthase (CYP11B1). We evaluated advanced lead mols., exemplified by compound 52, in an in vivo cynomolgus monkey acute adrenocorticotropic hormone (ACTH) challenge model and demonstrated a superior 100-fold in vivo selectivity against CYP11B1.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application In Synthesis of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Le Vaillant, Franck team published research in Nature (London, United Kingdom) in 2022 | 141699-55-0

Application In Synthesis of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Application In Synthesis of 141699-55-0

Le Vaillant, Franck;Mateos Calbet, Ana;Gonzalez-Pelayo, Silvia;Reijerse, Edward J.;Ni, Shengyang;Busch, Julia;Cornella, Josep research published 《 Catalytic synthesis of phenols with nitrous oxide》, the research content is summarized as follows. Here, an insertion of N2O into a Ni-C bond under mild conditions (room temperature, 1.5-2 bar N2O) for delivering valuable phenols ROH (R = Ph, 4-cyanophenyl, 1-oxo-2,3-dihydro-1H-inden-4-yl, quinolin-6-yl, etc.) and releasing benign N2 was reported. This fundamentally distinct organometallic C-O bond-forming step differs from the current strategies based on reductive elimination and enables an alternative catalytic approach for the conversion of aryl halides RX (X = I, Br) to phenols. The process was rendered catalytic by means of a bipyridine-based ligands for the Ni center. The method is robust, mild and highly selective, and able to accommodate base-sensitive functionalities as well as permitting phenol synthesis from densely functionalized aryl halides. Although this protocol does not provide a solution to the mitigation of N2O emissions, it represents a reactivity blueprint for the mild revalorization of abundant N2O as an O source.

Application In Synthesis of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lauber, Markus B. team published research in ACS Catalysis in 2013 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application In Synthesis of 141699-55-0

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application In Synthesis of 141699-55-0

Lauber, Markus B.;Stahl, Shannon S. research published 《 Efficient Aerobic Oxidation of Secondary Alcohols at Ambient Temperature with an ABNO/NOx Catalyst System》, the research content is summarized as follows. New highly practical methods are presented for aerobic oxidation of secondary alcs. with a nitroxyl radical in combination with HNO3, NaNO2, or both as cocatalysts. Diverse nitroxyls are compared, including several novel bicyclic derivatives Catalyst systems with the readily available nitroxyls, 9-azabicyclo[3.3.1]-nonane-N-oxyl (ABNO) and 9-azabicyclo[3.3.1]-nonan-3-one-N-oxyl (keto-ABNO), are optimized in acetic acid or acetonitrile as the solvent. The reactions are compatible with substrates bearing diverse functional groups and proceed efficiently under mild conditions at ambient pressure and temperature

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application In Synthesis of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts