Tully, David C. team published research in Journal of Medicinal Chemistry in 2017 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Formula: C8H15NO3

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 141699-55-0, formula is C8H15NO3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Formula: C8H15NO3

Tully, David C.;Rucker, Paul V.;Chianelli, Donatella;Williams, Jennifer;Vidal, Agnes;Alper, Phil B.;Mutnick, Daniel;Bursulaya, Badry;Schmeits, James;Wu, Xiangdong;Bao, Dingjiu;Zoll, Jocelyn;Kim, Young;Groessl, Todd;McNamara, Peter;Seidel, H. Martin;Molteni, Valentina;Liu, Bo;Phimister, Andrew;Joseph, Sean B.;Laffitte, Bryan research published 《 Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH)》, the research content is summarized as follows. The farnesoid X receptor (FXR) is a nuclear receptor that acts as a master regulator of bile acid metabolism and signaling. Activation of FXR inhibits bile acid synthesis and increases bile acid conjugation, transport, and excretion, thereby protecting the liver from the harmful effects of bile accumulation, leading to considerable interest in FXR as a therapeutic target for the treatment of cholestasis and nonalcoholic steatohepatitis. We identified a novel series of highly potent non-bile acid FXR agonists that introduce a bicyclic nortropine-substituted benzothiazole carboxylic acid moiety onto a trisubstituted isoxazole scaffold. Herein, we report the discovery of 1 (tropifexor, LJN452), a novel and highly potent agonist of FXR. Potent in vivo activity was demonstrated in rodent PD models by measuring the induction of FXR target genes in various tissues. Tropifexor has advanced into phase 2 human clin. trials in patients with NASH and PBC.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Formula: C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Tian, Xianhai team published research in ChemSusChem in 2022 | 141699-55-0

SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. SDS of cas: 141699-55-0

Tian, Xianhai;Kaur, Jaspreet;Yakubov, Shahboz;Barham, Joshua P. research published 《 α-Amino Radical Halogen Atom Transfer Agents for Metallaphotoredox-Catalyzed Cross-Electrophile Couplings of Distinct Organic Halides》, the research content is summarized as follows. α-Amino radicals from simple tertiary amines were employed as halogen atom transfer (XAT) agents in metallaphotoredox catalysis for cross-electrophile couplings of organic bromides with organic iodides. This XAT strategy proved to be efficient for the generation of carbon radicals from a range of partners (alkyl, aryl, alkenyl, and alkynyl iodides). The reactivities of these radical intermediates were captured by nickel catalysis with organobromides including aryl, heteroaryl, alkenyl, and alkyl bromides, enabling six diverse C-C bond formations. Classic named reactions including Negishi, Suzuki, Heck, and Sonogashira reactions were readily achieved in a net-reductive fashion under mild conditions. More importantly, the cross coupling was viable with either organic bromide or iodide as limiting reactant based on the availability of substrates, which is beneficial to the late-stage functionalization of complex mols. The scalability of this method in batch and flow was investigated, further demonstrating its applicability.

SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Takhi, Mohamed team published research in European Journal of Medicinal Chemistry in 2014 | 141699-55-0

SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. SDS of cas: 141699-55-0

Takhi, Mohamed;Sreenivas, Kandepu;Reddy, Chandrashekar K.;Munikumar, Mahadari;Praveena, Kolakota;Sudheer, Pabolu;Rao, Bandaru N. V. M.;Ramakanth, Gollamudi;Sivaranjani, Jampala;Mulik, Shardaprasad;Reddy, Yeruva R.;Narasimha Rao, Krishnamurthy;Pallavi, Rentala;Lakshminarasimhan, Anirudha;Panigrahi, Sunil K.;Antony, Thomas;Abdullah, Iskandar;Lee, Yean K.;Ramachandra, Murali;Yusof, Rohana;Rahman, Noorsaadah A.;Subramanya, Hosahalli research published 《 Discovery of azetidine based ene-amides as potent bacterial enoyl ACP reductase (FabI) inhibitors》, the research content is summarized as follows. A novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-pos. pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochem. inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clin. relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, I, in Escherichia coli FabI enzyme was determined unambiguously using x-ray crystallog. The lead compounds displayed good metabolic stability in mice liver microsomes and pharmacokinetic profile in mice. The in vivo efficacy of lead AEA16 has been demonstrated in a lethal murine systemic infection model.

SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Steves, Janelle E. team published research in Organic Process Research & Development in 2015 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application In Synthesis of 141699-55-0

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Application In Synthesis of 141699-55-0

Steves, Janelle E.;Preger, Yuliya;Martinelli, Joseph R.;Welch, Christopher J.;Root, Thatcher W.;Hawkins, Joel M.;Stahl, Shannon S. research published 《 Process Development of CuI/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation》, the research content is summarized as follows. An improved Cu/nitroxyl catalyst system for aerobic alc. oxidation has been developed for the oxidation of functionalized primary and secondary alcs. to aldehydes and ketones, suitable for implementation in batch and flow processes. This catalyst, which has been demonstrated in a >50 g scale batch reaction, addresses a number of process limitations associated with a previously reported (MeObpy)CuI/ABNO/NMI catalyst system (MeObpy = 4,4′-dimethoxy-2,2′-bipyridine, ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl, NMI = N-methylimidazole). Important catalyst modifications include the replacement of [Cu(MeCN)4]OTf with a lower-cost Cu source, CuI, reduction of the ABNO loading to 0.05-0.3 mol%, and use of NMI as the only ligand/additive (i.e., without a need for MeObpy). Use of a high flash point solvent, N-methylpyrrolidone, enables safe operation in batch reactions with air as the oxidant. For continuous-flow applications compatible with elevated gas pressures, better performance is observed with acetonitrile as the solvent.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application In Synthesis of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Song, Lijun team published research in Journal of Medicinal Chemistry in 2018 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., COA of Formula: C8H15NO3

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , COA of Formula: C8H15NO3

Song, Lijun;Merceron, Romain;Gracia, Begona;Quintana, Ainhoa Lucia;Risseeuw, Martijn D. P.;Hulpia, Fabian;Cos, Paul;Ainsa, Jose A.;Munier-Lehmann, Helene;Savvides, Savvas N.;Van Calenbergh, Serge research published 《 Structure Guided Lead Generation toward Nonchiral M. tuberculosis Thymidylate Kinase Inhibitors》, the research content is summarized as follows. In recent years, thymidylate kinase (TMPK), an enzyme indispensable for bacterial DNA biosynthesis, has been pursued for the development of new antibacterial agents including against Mycobacterium tuberculosis, the causative agent for the widespread infectious disease tuberculosis (TB). In response to a growing need for more effective anti-TB drugs, the authors have built upon the authors’ previous efforts toward the exploration of novel and potent Mycobacterium tuberculosis TMPK (MtTMPK) inhibitors, and reported here the design of a novel series of non-nucleoside inhibitors of MtTMPK. The inhibitors display hitherto unexplored interactions in the active site of MtTMPK, offering new insights into structure-activity relationships. To investigate the discrepancy between enzyme inhibitory activity and the whole-cell activity, experiments with efflux pump inhibitors and efflux pump knockout mutants were performed. The min. inhibitory concentrations of particular inhibitors increased significantly when determined for the efflux pump mmr knockout mutant, which partly explains the observed dissonance.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., COA of Formula: C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Steves, Janelle E. team published research in Journal of the American Chemical Society in 2013 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Quality Control of 141699-55-0

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 141699-55-0, formula is C8H15NO3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Quality Control of 141699-55-0

Steves, Janelle E.;Stahl, Shannon S. research published 《 Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems》, the research content is summarized as follows. Cu/TEMPO catalyst systems promote efficient aerobic oxidation of sterically unhindered primary alcs. and electronically activated substrates, but they show reduced reactivity with aliphatic and secondary alcs. Here, we report a catalyst system, consisting of (MeObpy)-CuI(OTf) and ABNO (MeObpy = 4,4′-dimethoxy-2,2′-bipyridine; ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl), that mediates aerobic oxidation of all classes of alcs., including primary and secondary allylic, benzylic, and aliphatic alcs. with nearly equal efficiency. The catalyst exhibits broad functional group compatibility, and most reactions are complete within 1 h at room temperature using ambient air as the source of oxidant.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Quality Control of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Song, Juanjuan team published research in Tetrahedron Letters in 2014 | 141699-55-0

Computed Properties of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Computed Properties of 141699-55-0

Song, Juanjuan;Li, Xinjian;Liang, Apeng;Li, Jingya;Zou, Dapeng;Wu, Yangjie;Wu, Yusheng research published 《 Synthesis of aryloxyazetidine derivatives by CuI/L-proline catalyzed coupling reaction of arylboronic acid with 1-Boc-3-iodoazetidine》, the research content is summarized as follows. A novel CuI/L-proline-catalyzed coupling reaction of 1-Boc-3-iodoazetidine with various arylboronic acids produced 3-(aryloxy)azetidines in moderate to good yields.

Computed Properties of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shen, Xiao team published research in Angewandte Chemie, International Edition in 2015 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Computed Properties of 141699-55-0

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 141699-55-0

Shen, Xiao;Neumann, Constanze N.;Kleinlein, Claudia;Goldberg, Nathaniel W.;Ritter, Tobias research published 《 Alkyl Aryl Ether Bond Formation with PhenoFluor》, the research content is summarized as follows. An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcs. with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Computed Properties of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shaw, Megan H. team published research in Science (Washington, DC, United States) in 2016 | 141699-55-0

Reference of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Reference of 141699-55-0

Shaw, Megan H.;Shurtleff, Valerie W.;Terrett, Jack A.;Cuthbertson, James D.;MacMillan, David W. C. research published 《 Native functionality in triple catalytic cross-coupling: sp3 C-H bonds as latent nucleophiles》, the research content is summarized as follows. The use of sp3 C-H bonds-which are ubiquitous in organic mols.-as latent nucleophile equivalent for transition metal-catalyzed cross-coupling reactions has the potential to substantially streamline synthetic efforts in organic chem. while bypassing substrate activation steps. Through the combination of photoredox-mediated hydrogen atom transfer (HAT) and nickel catalysis, we have developed a highly selective and general C-H arylation protocol that activates a wide array of C-H bonds as native functional handles for cross-coupling. This mild approach takes advantage of a tunable HAT catalyst that exhibits predictable reactivity patterns based on enthalpic and bond polarity considerations to selectively functionalize α-amino and α-oxy sp3 C-H bonds in both cyclic and acyclic systems.

Reference of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Scott, James S. team published research in Journal of Medicinal Chemistry in 2020 | 141699-55-0

Category: alcohols-buliding-blocks, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks

Scott, James S.;Moss, Thomas A.;Balazs, Amber;Barlaam, Bernard;Breed, Jason;Carbajo, Rodrigo J.;Chiarparin, Elisabetta;Davey, Paul R. J.;Delpuech, Oona;Fawell, Stephen;Fisher, David I.;Gagrica, Sladjana;Gangl, Eric T.;Grebe, Tyler;Greenwood, Ryan D.;Hande, Sudhir;Hatoum-Mokdad, Holia;Herlihy, Kara;Hughes, Samantha;Hunt, Thomas A.;Huynh, Hoan;Janbon, Sophie L. M.;Johnson, Tony;Kavanagh, Stefan;Klinowska, Teresa;Lawson, Mandy;Lister, Andrew S.;Marden, Stacey;McGinnity, Dermot F.;Morrow, Christopher J.;Nissink, J. Willem M.;O’Donovan, Daniel H.;Peng, Bo;Polanski, Radoslaw;Stead, Darren S.;Stokes, Stephen;Thakur, Kumar;Throner, Scott R.;Tucker, Michael J.;Varnes, Jeffrey;Wang, Haixia;Wilson, David M.;Wu, Dedong;Wu, Ye;Yang, Bin;Yang, Wenzhan research published 《 Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist》, the research content is summarized as follows. Herein we report the optimization of a series of tricyclic indazoles as selective estrogen receptor degraders (SERD) and antagonists for the treatment of ER+ breast cancer. Structure based design together with systematic investigation of each region of the mol. architecture led to the identification of N-[1-(3-fluoropropyl)azetidin-3-yl]-6-[(6S,8R)-8-methyl-7-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydro-3H-pyrazolo[4,3-f]isoquinolin-6-yl]pyridin-3-amine (I). This compound was demonstrated to be a highly potent SERD that showed a pharmacol. profile comparable to fulvestrant in its ability to degrade ERα in both MCF-7 and CAMA-1 cell lines. A stringent control of lipophilicity ensured that I had favorable physicochem. and preclin. pharmacokinetic properties for oral administration. This, combined with demonstration of potent in vivo activity in mouse xenograft models, resulted in progression of this compound, also known as AZD9833, into clin. trials.

Category: alcohols-buliding-blocks, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts