Interesting scientific research on (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Midya, SP; Subaramanian, M; Babu, R; Yadav, V; Balaraman, E or send Email.. Name: (4-Methoxyphenyl)methanol

An article Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis WOS:000661138500021 published article about ALCOHOLS; OLEFINATION; ARYLACETONITRILES; ALKYLATION in [Midya, Siba P.; Subaramanian, Murugan; Babu, Reshma; Balaraman, Ekambaram] Indian Inst Sci Educ & Res IISER Tirupati, Dept Chem, Tirupati 517507, Andhra Pradesh, India; [Yadav, Vinita] CSIR Natl Chem Lab CSIR NCL, Organ Chem Div, Pune 411008, Maharashtra, India in 2021, Cited 55. Name: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The development of new catalytic processes based on abundantly available starting materials by cheap metals is always a fascinating task and marks an important transition in the chemical industry. Herein, a nickel-catalyzed acceptorless dehydrogenative coupling of alcohols with nitriles followed by decyanation of nitriles to access diversely substituted olefins is reported. This unprecedented C=C bond-forming methodology takes place in a tandem manner with the formation of formamide as a sole byproduct. The significant advantages of this strategy are the low-cost nickel catalyst, good functional group compatibility (ether, thioether, halo, cyano, ester, amino, N/O/S heterocycles; 43 examples), synthetic convenience, and high reaction selectivity and efficiency.

Welcome to talk about 105-13-5, If you have any questions, you can contact Midya, SP; Subaramanian, M; Babu, R; Yadav, V; Balaraman, E or send Email.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching 105-13-5

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB or send Email.

Application In Synthesis of (4-Methoxyphenyl)methanol. In 2021 APPL ORGANOMET CHEM published article about C-H BONDS; CATALYZED ESTERIFICATION; COUPLING REACTIONS; CARBONYLATION; ALDEHYDES; CLEAVAGE; ESTERS; AMINATION; FUNCTIONALIZATION; ACTIVATION in [Dong, Jianyu; Mo, Min; Tang, Jian-Sheng] Hunan First Normal Univ, Dept Educ Sci, Changsha 410205, Peoples R China; [Dong, Jianyu; Chen, Xiuling; Ji, Fangyan; Liu, Lixin; Su, Lebin; Zhou, Yongbo] Hunan Univ, Coll Chem & Chem Engn, Changsha, Peoples R China; [Chen, Xiuling] Hubei Univ Sci & Technol, Nonpower Nucl Technol Collaborat Innovat Ctr, Sch Nucl Technol & Chem & Biol, Xianning, Peoples R China in 2021, Cited 79. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A simple and direct aerobic oxidative esterification reaction of arylacetonitriles with alcohols/phenols is achieved in the presence of a copper salt and molecular oxygen, which produces a broad range of aryl carboxylic acid esters in good to high yields. Copper salt plays multiple roles in the transformation, which allows the oxygenation of C-H bond, cleavage of inert C-C bond, and formation of C-O bond in one pot without the assistance of any of the acids, bases, ligands, and so on. The reaction provides a simple, direct, and efficient protocol towards functionalized esters, especially aryl benzoates, from readily available starting materials.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

A new application about(4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Product Details of 105-13-5

Recently I am researching about MESOPOROUS MOLECULAR-SIEVE; METAL-SUPPORT INTERACTION; SELECTIVE HYDROGENATION; UNSATURATED ALDEHYDES; CINNAMYL ALCOHOL; ACTIVATED CARBON; HIGHLY EFFICIENT; CINNAMALDEHYDE; RUTHENIUM; COMPLEXES, Saw an article supported by the C1 Gas Refinery Program [2018M3D3A1A01018006]; National Research Foundation of Korea (NRF) – Ministry of Science, ICT, and Future Planning, Republic of Korea [2020M3H7A1098259]. Published in ELSEVIER SCIENCE INC in NEW YORK ,Authors: Padmanaban, S; Lee, Y; Yoon, S. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Product Details of 105-13-5

Selective hydrogenation of the carbonyl functional group of alpha,beta-unsaturated carbonyl compounds affords industrially important allylic alcohols. However, achieving the selective reduction of the carbonyl group in the presence of the activated olefinic group is challenging. Therefore, the development of a highly chemoselective, efficient, and recyclable catalyst for this transformation is greatly desirable from the industrial and environmental viewpoints. In this study, a Ru-immobilized bisphosphine-based porous organic polymer (Ru@PP-POP) was used as an efficient heterogeneous catalyst for chemoselective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol with high chemoselectivity (98%) and excellent recyclability. To the best of our knowledge, the catalyst, Ru@PP-POP showed a high turnover number (970) and a high turnover frequency (240h(1)) which is the best activity obtained using a phosphine based heterogeneous Ru-catalyst in this transformation. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Li, Y; Pan, CS; Wang, GL; Leng, Y; Jiang, PP; Dong, YM; Zhu, YF or send Email.. Product Details of 105-13-5

Product Details of 105-13-5. Authors Li, Y; Pan, CS; Wang, GL; Leng, Y; Jiang, PP; Dong, YM; Zhu, YF in ROYAL SOC CHEMISTRY published article about in [Li, Yan; Pan, Chengsi; Wang, Guangli; Leng, Yan; Jiang, Pingping; Dong, Yuming] Jiangnan Univ, Int Joint Res Ctr Photorespons Mol & Mat, Sch Chem & Mat Engn, Wuxi 214122, Jiangsu, Peoples R China; [Zhu, Yongfa] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Until now, the effective photocatalytic oxidation of benzyl alcohol to benzaldehyde with high selectivity is still a great challenge. It is reported that the carrier separation rate is the key factor affecting the photocatalytic activity, and the formation of heterojunction is an effective solution to hinder electron-hole recombination. SnS with a narrow band gap has excellent light absorption performance, which covers the whole visible light region. After compounding with g-C3N4, the light utilization of the SnS/g-C3N4 photocatalyst is effectively improved. In addition, a Z-scheme heterojunction is formed between SnS and g-C3N4 due to the matched energy levels, which accelerates the separation of electrons and holes and improves the conversion of benzyl alcohol effectively. In this paper, the charge separation is accelerated to promote the reaction by the in situ construction of Z-scheme heterojunctions; the preparation method, reaction mechanism and energy level structure of the photocatalyst can play a certain guiding role in the organic conversion reaction.

Welcome to talk about 105-13-5, If you have any questions, you can contact Li, Y; Pan, CS; Wang, GL; Leng, Y; Jiang, PP; Dong, YM; Zhu, YF or send Email.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Why Are Children Getting Addicted To (4-Methoxyphenyl)methanol

COA of Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

COA of Formula: C8H10O2. Recently I am researching about 1,3-DIPOLAR CYCLOADDITION REACTIONS; ASYMMETRIC CYCLOADDITIONS; RHODIUM; CARBENOIDS; DIAZOESTERS; COMPLEXES; CATALYSTS, Saw an article supported by the Japan Society for the Promotion of Science (JSPS)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [JP15K05497, JP17KT0096, JP19K05454]. Published in WILEY-V C H VERLAG GMBH in WEINHEIM ,Authors: Toda, Y; Yoshida, T; Arisue, K; Fukushima, K; Esaki, H; Kikuchi, A; Suga, H. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Chiral Lewis acid-catalyzed asymmetric alcohol addition reactions to cyclic carbonyl ylides generated from N-(alpha-diazocarbonyl)-2-oxazolidinones featuring a dual catalytic system are reported. Construction of a chiral quaternary heteroatom-substituted carbon center was accomplished in which the unique heterobicycles were obtained in good yields with high stereoselection. The alcohol adducts were successfully converted to optically active oxazolidine-2,4-diones by hydrolysis. Mechanistic studies by DFT calculations revealed that alcohols could be activated by Lewis acids, enabling enantioselective protonation of the carbonyl ylides.

COA of Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

A new application about(4-Methoxyphenyl)methanol

Product Details of 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Authors Kargar, H; Bazrafshan, M; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN in PERGAMON-ELSEVIER SCIENCE LTD published article about AEROBIC OXIDATION; BENZYLIC ALCOHOLS; C-H; COPPER; ALDEHYDES; MILD in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Bazrafshan, Maryam; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan in 2021, Cited 56. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

For the first time, two new oxovanadium and dioxomolybdenum Schiff base complexes, VOL(OMe) and MoO2L, were synthesized through the reaction of a ONO tridentate Schiff base ligand (H2L) derived from the condensation of 5-bromosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)(2) and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, H-1 NMR, C-13 NMR, elemental analysis (CHN) and the most authentic single crystal X-ray diffraction analysis (SC-XRD). The geometry around the central metal ion in MoO2L was distorted octahedral as revealed by the data collected from diffraction studies. Non-covalent interactions that are responsible for crystal packing are explored by Hirshfeld surface analysis. Theoretical calculations of the synthesized compounds, carried out by DFT at B3LYP/Def2-TZVP level of theory, indicated that the calculated results are in agreement with the experimental findings. Moreover, the catalytic activities of both complexes were investigated for the selective oxidation of benzylic alcohols using urea hydrogen peroxide (UHP) in acetonitrile. (C) 2021 Elsevier Ltd. All rights reserved.

Product Details of 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of C8H10O2

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. COA of Formula: C8H10O2

COA of Formula: C8H10O2. In 2021 TETRAHEDRON published article about ASYMMETRIC TRANSFER HYDROGENATION; ENANTIOSELECTIVE TRANSFER HYDROGENATION; MEDIATED 2+2+1 CYCLOADDITIONS; TRIMETHYLAMINE N-OXIDE; METAL-DIENE COMPLEXES; REDUCTIVE AMINATION; SELECTIVE HYDROGENATION; HIGHLY EFFICIENT; ORGANIC-SYNTHESIS; CARBON-MONOXIDE in [Coufourier, Sebastien; Ndiaye, Daouda; Gaillard, Quentin Gaignard; Bettoni, Leo; Joly, Nicolas; Mbaye, Mbaye Diagne; Gaillard, Sylvain; Renaud, Jean-Luc] Normandie Univ, CNRS, UNICAEN, LCMT,ENSICAEN, 6 Blvd Marechal Juin, F-14050 Caen, France; [Ndiaye, Daouda; Mbaye, Mbaye Diagne] Univ Assane Seck Ziguinchor, BP 523, Ziguinchor, Senegal; [Joly, Nicolas; Poater, Albert] Univ Girona, Inst Quim Computac & Catalisi IQCC, Dept Quim, C M Aurelia Capmany 69, Girona 17003, Catalonia, Spain in 2021, Cited 109. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A Diaminocyclopentadienone iron tricarbonyl complex has been applied in chemoselective hydrogen transfer reductions. This bifunctional iron complex demonstrated a broad applicability in mild conditions in various reactions, such as reduction of aldehydes over ketones, reductive alkylation of various functionalized amines with functionalized aldehydes and reduction of alpha,beta-unsaturated ketones into the corresponding saturated ketones. A broad range of functionalized substrates has been isolated in excellent yields with this practical procedure. (C) 2021 Elsevier Ltd. All rights reserved.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. COA of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :C8H10O2

Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Formula: C8H10O2. Authors Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD in AMER CHEMICAL SOC published article about in [Wang, Zhao-Hui; Wang, He; Wang, Hua; Li, Lei; Zhou, Ming-Dong] Liaoning Shihua Univ, Sch Chem & Mat Sci, Fushun 113001, Peoples R China in 2021, Cited 63. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this work, ruthenium(II)-catalyzed C-C/C-N annulation of 2-arylquinazolinones with vinylene carbonate is reported to synthesize fused quinazolinones. This catalytic system tolerates a wide range of substrates with excellent functional-group compatibility. In this transformation, the vinylene carbonate acts as an ethynol surrogate without any external oxidant involved. Furthermore, preliminary mechanistic studies were conducted, and a plausible catalytic cycle was also proposed.

Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Get Up to Speed Quickly on Emerging Topics:C8H10O2

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Recommanded Product: 105-13-5

Recommanded Product: 105-13-5. Feng, XS; Huang, M in [Feng, Xinshu; Huang, Ming] Guangdong Pharmaceut Univ, Sch Clin Pharm, Guangzhou 510006, Peoples R China published Effect of the ancillary ligand in N-heterocyclic carbene iridium(III) catalyzed N-alkylation of amines with alcohols in 2021, Cited 40. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A series of air-stable N-heterocyclic carbene (NHC) Ir(III) complexes (Ir1-6), bearing various combinations of chlorine, pyridine and NHC ligands, were assayed for the N-alkylation of amines with alcohols. It was found that Ir3, with two monodentate 1,3-bis-methyl-imidazolylidene (IMe) ligands, emerged as the most active complex. A large variety of amines and primary alcohols were efficiently converted into mono-N-alkylated amines in 53-96% yields. As a special highlight, for the challenging MeOH, selective N-monomethylation could be achieved using KOH as a base under an air atmosphere. Moreover, this catalytic system was successfully applied to the gram-scale synthesis of some valuable compounds. (C) 2021 Elsevier Ltd. All rights reserved.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Discovery of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A or send Email.. Safety of (4-Methoxyphenyl)methanol

Authors Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A in ROYAL SOC CHEMISTRY published article about in [Bisht, Narendra Singh; Mehta, S. P. S.; Sahoo, Nanda Gopal; Dandapat, Anirban] Kumaun Univ, Dept Chem, DSB Campus, Naini Tal, Uttarakhand, India in 2021, Cited 74. Safety of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The room temperature synthesis of an all-solid-state Z-scheme CuO-doped BiOBr (CuO-Bi-BiOBr) photocatalyst has been described. These CuO-Bi-BiOBr ternary heterojunctions exhibit efficient photocatalytic activities for selective alcohol oxidation. The structures, morphologies, and compositions of the nanostructures were well characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS). The X-ray diffraction (XRD) pattern of the as-synthesized nanostructures confirms the formation of phase-segregated CuO and BiOBr nanocrystals, whereas X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) analyses clearly indicate the formation of metallic bismuth nanoparticles (NPs). Next, the developed CuO-Bi-BiOBr ternary heterojunctions were applied as an efficient photocatalyst for the oxidation of alcohols into their corresponding aldehydes/ketones with high selectivity (>99%) and high conversion ratios (>99%). Herein, Bi metal NPs act as an electron mediator and bridge the connectivity between the two semiconductors, BiOBr and CuO, and, thus, a Z-scheme heterojunction is established. As expected, CuO-Bi-BiOBr has shown significantly superior activities compared to those of pure BiOBr. A possible mechanism for the photocatalytic oxidation process has been proposed. Radical scavenging experiments suggest that the active species, h(+), OH, e(-), and O-2(-), are dominant in the alcohol oxidation process. The as-synthesized CuO-Bi-BiOBr was reused several times without any significant deterioration in the original activities and it thus possesses relatively high stability for practical applications.

Welcome to talk about 105-13-5, If you have any questions, you can contact Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A or send Email.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts