Machine Learning in Chemistry about C8H10O2

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Authors Balaji, S; Balamurugan, G; Ramesh, R; Semeril, D in AMER CHEMICAL SOC published article about AEROBIC OXIDATIVE SYNTHESIS; CASCADE SYNTHESIS; QUINAZOLINONES; LIGANDS; FUNCTIONALIZATION; AMINOBENZAMIDES; BENZIMIDAZOLES; HYDROPEROXIDE; HETEROCYCLES; CHEMISTRY in [Balaji, Sundarraman; Balamurugan, Gunasekaran; Ramesh, Rengan] Bharathidasan Univ, Ctr Organometall Chem, Sch Chem, Tiruchirappalli 620024, Tamil Nadu, India; [Semeril, David] Univ Strasbourg, Inst Chim, Lab Chim Inorgan & Catalyse, UMR 7177,CNRS, F-67070 Strasbourg, France in 2021, Cited 78. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A convenient protocol for the one-pot synthesis of quinazolin-4(3H)-ones using palladium(II) complexes via dehydrogenative coupling of readily available benzyl alcohols and 2-aminobenzamide has been described. New structurally related Pd(II) N boolean AND O chelating complexes of general configuration [Pd(L)Cl(PPh3)] (where L = dimethylamino benzoylhydrazone ligands) have been designed and synthesized. The formation of the complexes has been recognized by analytical and spectral methods (FT-IR, NMR, HR-MS). The presence of a square-planar geometry around the palladium(II) ion was confirmed by single crystal X-ray diffraction study. A wide range of substituted quinazolinones have been successfully achieved from a diverse range of benzyl alcohols in good to excellent yields using 1.0 mol % of catalyst loading under aerobic conditions. Furthermore, control experiments reveal that the dehydrogenative coupling reaction involves initially the formation of an aldehyde intermediate and subsequent formation of a cyclic aminal intermediate.

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Discovery of 105-13-5

Recommanded Product: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Agarwal, S; Phukan, P; Sarma, D; Deori, K or send Email.

An article Versatile precursor-dependent copper sulfide nanoparticles as a multifunctional catalyst for the photocatalytic removal of water pollutants and the synthesis of aromatic aldehydes and NH-triazoles WOS:000658411500001 published article about BENZYL ALCOHOL; DYE DEGRADATION; CUS; EFFICIENT; EVOLUTION; TIO2; 1,2,3-TRIAZOLES; MICROSPHERES; NANOCRYSTALS; REDUCTION in [Agarwal, Soniya; Phukan, Parmita; Sarma, Diganta; Deori, Kalyanjyoti] Dibrugarh Univ, Dept Chem, Dibrugarh 786004, Assam, India in 2021, Cited 49. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: (4-Methoxyphenyl)methanol

A series of copper sulfide (CS) nanoparticles (NPs) were synthesized just by varying the amount of the sulfur precursor and have been explored for the first time as a three-way heterogeneous catalyst in the photocatalytic oxidation of a number of aromatic alcohols, photocatalytic degradation and the reduction of water pollutants, and the facile synthesis of pharmaceutically important moiety 4-aryl-NH-1,2,3-triazoles. The green and novel protocol was successfully developed for the synthesis of covellite (CuS, Cu2+) and the covellite-villamaninite (CuS-CuS2) (copper in Cu2+, Cu1+) phases of copper sulfide, employing EDTA both as the chelating and capping agent via a simple precipitation method at room temperature using water as the solvent. A blue shift in the absorption spectra and band gap in the range of 2.02-2.07 eV prompted the investigation of the as-synthesized CS nanoparticles as the photocatalyst under visible light irradiation. In the absence of any oxidizing or reducing agent, covellite CuS nanoparticles showed the highest photocatalytic efficiency for the degradation of methylene blue (MB) and the reduction of carcinogenic and mutagenic Cr(vi) to non-toxic Cr(iii). Interestingly, the mixed phase of CS (CuS-CuS2), where Cu is present in both +1 and +2 oxidation states, was found to be the most efficient catalyst compared to CuS toward the visible light-mediated selective oxidation of various benzyl alcohols to their corresponding aldehydes. However, in the synthesis of substituted NH-1,2,3-triazoles, single-phase CS nanoparticles (i.e., CuS) provided the best catalytic result. This significant outcome certainly opens up the scope for realizing the present demand of low-cost multifunctional semiconductor nano-materials, which will have a huge impact on the economy and environment when they show more than two potential applications.

Recommanded Product: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Agarwal, S; Phukan, P; Sarma, D; Deori, K or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Japa, M; Tantraviwat, D; Phasayavan, W; Nattestad, A; Chen, J; Inceesungvorn, B or send Email.. Recommanded Product: 105-13-5

Recommanded Product: 105-13-5. In 2021 COLLOID SURFACE A published article about PHOTOCATALYTIC ACTIVITY; AEROBIC OXIDATION; TITANIUM-DIOXIDE; FACILE SYNTHESIS; ANATASE TIO2; BENZALDEHYDE; ENHANCEMENT; HETEROSTRUCTURE; NANOCOMPOSITES; NANOPARTICLES in [Japa, Mattawan; Phasayavan, Witchaya] Chiang Mai Univ, Grad Sch, Chiang Mai 50200, Thailand; [Japa, Mattawan; Phasayavan, Witchaya; Inceesungvorn, Burapat] Chiang Mai Univ, Fac Sci, Ctr Excellence Innovat Chem PERCH CIC, Ctr Excellence Mat Sci & Technol,Dept Chem, Chiang Mai 50200, Thailand; [Japa, Mattawan; Nattestad, Andrew; Chen, Jun] Univ Wollongong, ARC Ctr Excellent Electromat Sci, Intelligent Polymer Res Inst, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia; [Tantraviwat, Doldet] Chiang Mai Univ, Fac Engn, Dept Elect Engn, Chiang Mai 50200, Thailand in 2021, Cited 52. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

N-doped TiO2, denoted as T_400, was prepared simply by the facile thermal hydrolysis of TiOSO4 using NH4OH as both a precipitating agent and a nitrogen source. Compared to TiO2 without nitrogen doping, T_400 provides superior photocatalytic activity toward the selective oxidation of benzyl alcohol and benzylamine under visible light irradiation, with > 85 % conversion and > 95 % selectivity to benzaldehyde and N-benzylidenebenzylamine products, respectively. The increased photoactivity of T_400 is ascribed to enhanced visible-light absorption and efficient photogenerated charge transfer and separation as supported by UV-vis DRS, photoelectrochemical and VB-XPS results. The catalyst can tolerate the presence of substituent groups in benzyl alcohol and benzelamine molecules as > 80 % conversion and > 95 % selectivity are still achieved, which expands the scope of substrates and catalyst utilization. Band energy level of N-doped TiO2 compared to that of undoped TiO2 is determined using Mott-Schottky and UV-vis DRS measurements. Possible mechanisms for the formation of benzaldehyde and N-benzylidenebenzylamine over N-doped TiO2 are proposed. This work presents a simple synthesis of N-doped TiO2, using a low-cost and easily handled inorganic titanium salt instead of air/moisture-sensitive alkoxide precursors and reveals its potential application toward photocatalytic synthesis of organic fine chemicals under visible light.

Welcome to talk about 105-13-5, If you have any questions, you can contact Japa, M; Tantraviwat, D; Phasayavan, W; Nattestad, A; Chen, J; Inceesungvorn, B or send Email.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An overview of features, applications of compound:105-13-5

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

An article Novel oxovanadium and dioxomolybdenum complexes of tridentate ONO-donor Schiff base ligand: Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity for the selective oxidation of benzylic alcohols WOS:000652819900001 published article about AEROBIC OXIDATION; CIS-DIOXOMOLYBDENUM(VI) COMPLEXES; MOLYBDENUM(VI) COMPLEX; HYDROGEN-PEROXIDE; MOLECULAR-OXYGEN; SC-XRD; EPOXIDATION; METAL; EFFICIENT; BENZALDEHYDE in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Forootan, Pooran; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan in 2021, Cited 98. Recommanded Product: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Two new oxovanadium and dioxomolybdenum Schiff base complexes, [VvO(L)(OCH3)(CH3OH)] and [MoVIO2(L) (CH2CH3OH)], were synthesized by treating an ONO-donor type Schiff base ligand (H2L) derived by condensation of 5-nitrosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)2 and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, multinuclear (1H, 13C) NMR, elemental analysis and the most authentic single crystal X-ray diffraction analysis. In both complexes the geometry around the central metal ions was distorted octahedral as revealed by the data collected from diffraction studies. Theoretical calculation of the synthesized compounds were carried out by DFT as well as TD-DFT using B3LYP method by employing the Def2-TZVP basis set. The findings of theoretical data indicated that the calculated results are in accordance with the experimental findings. Moreover, the catalytic efficiencies of both complexes were investigated by oxidizing the benzylic alcohols in the presence of urea hydrogen peroxide (UHP) in acetonitrile.

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about 105-13-5

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Arslan, B; Gulcemal, S or send Email.

Authors Arslan, B; Gulcemal, S in ROYAL SOC CHEMISTRY published article about ONE-POT SYNTHESIS; BORROWING HYDROGEN; SECONDARY ALCOHOLS; NITRILES; MONOALKYLATION; RHODIUM; BENZYL; LIGAND; HYDROTALCITE; ACETONITRILE in [Arslan, Burcu; Gulcemal, Suleyman] Ege Univ, Dept Chem, TR-35100 Izmir, Turkey in 2021, Cited 65. Safety of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A series of backbone-modified N-heterocyclic carbene (NHC) complexes of iridium(I) (1d-f) have been synthesized and characterized. The electronic properties of the NHC ligands have been assessed by comparison of the IR carbonyl stretching frequencies of the in situ prepared [IrCl(CO)(2)(NHC)] complexes in CH2Cl2. These new complexes (1d-f), together with previously prepared 1a-c, were applied as catalysts for the alpha-alkylation of arylacetonitriles with an equimolar amount of primary alcohols or 2-aminobenzyl alcohol. The catalytic activities of these complexes could be controlled by modifying the N-substituents and backbone of the NHC ligands. The NHC-Ir-I complex 1f bearing 4-methoxybenzyl substituents on the N-atoms and 4-methoxyphenyl groups at the 4,5-positions of imidazole exhibited the highest catalytic activity in the alpha-alkylation of arylacetonitriles with primary alcohols. Various alpha-alkylated nitriles and aminoquinolines were obtained in high yields through a borrowing hydrogen pathway by using 0.1 mol% 1f and a catalytic amount of KOH (5 mol%) under an air atmosphere within significantly short reaction times.

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Arslan, B; Gulcemal, S or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of 105-13-5

Recommanded Product: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or send Email.

In 2021 ACS CATAL published article about NITROGEN-HETEROCYCLES; ELECTRONIC-STRUCTURES; COMPLEXES; OXIDATION; HYDROGENATION; REACTIVITY in [Das, Siuli; Mondal, Rakesh; Chakraborty, Gargi; Guin, Amit Kumar; Paul, Nanda D.] Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, India; [Das, Abhishek] Indian Assoc Cultivat Sci, Sch Chem Sci, Kolkata 700032, India in 2021, Cited 79. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

Herein we report an exclusively ligand-centered redox controlled approach for the dehydrogenation of a variety of N-heterocycles using a Zn(II)-stabilized azo-anion radical complex as the catalyst. A simple, easy-to-prepare, and bench-stable Zn(II)-complex (1b) featuring the tridentate arylazo pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline, in the presence of zinc-dust, undergoes reduction to form the azo-anion radical species [1b]which efficiently dehydrogenates various saturated N-heterocycles such as 1,2,3,4-tetrahydro-2-methylquinoline, 1,2,3,4-tetrahydro-isoquinoline, indoline, 2-phenyl-2,3-dihydro-1H-benzoimidazole, 2,3-dihydro-2-phenylquinazolin-4(1H)-one, and 1,2,3,4-tetrahydro-2-phenylquinazolines, among others, under air. The catalyst has further been found to be compatible with the cascade synthesis of these N-heterocycles via dehydrogenative coupling of alcohols with other suitable coupling partners under air. Mechanistic investigation reveals that the dehydrogenation reactions proceed via a one-electron hydrogen atom transfer (HAT) pathway where the zinc-stabilized azo-anion radical ligand abstracts the hydrogen atom from the organic substrate(s), and the whole catalytic cycle proceeds via the exclusive involvement of the ligand-centered redox events where the zinc acts only as the template.

Recommanded Product: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Xia, YY; Lv, QY; Yuan, H; Wang, JY or send Email.. Category: alcohols-buliding-blocks

Category: alcohols-buliding-blocks. Authors Xia, YY; Lv, QY; Yuan, H; Wang, JY in SPRINGER INTERNATIONAL PUBLISHING AG published article about in [Xia, Yu-Yan; Lv, Qing-Yang; Yuan, Hua; Wang, Jia-Yi] Wuhan Inst Technol, Minist Educ, Key Lab Green Chem Proc, Wuhan 430073, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

An efficient method for catalyzing the ammoxidation of aromatic alcohols to aromatic nitriles was developed, in which a new heterogeneous catalyst based on transition metal elements was employed, the new catalyst was named Co-[Bmim]Br/C-700 and then characterized by X-ray photo-electronic spectroscopy, transmission electron microscope and X-ray diffraction. The reaction was carried out by two consecutive dehydrogenations under the catalysis of Co-[Bmim]Br/C-700, which catalytically oxidized the alcohol to the aldehyde, and then the aldehyde was subjected to ammoxidation to the nitrile. The catalyst system was suitable for a wide range of substrates and nitriles obtained in high yields, especially, the conversion rate of benzyl alcohol, 4-methoxybenzyl alcohol, 4-chlorobenzyl alcohol and 4-nitrobenzyl alcohol reached 100%. The substitution of ammonia and oxygen for toxic cyanide to participate in the reaction accords with the theory of green chemistry.

Welcome to talk about 105-13-5, If you have any questions, you can contact Xia, YY; Lv, QY; Yuan, H; Wang, JY or send Email.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What Kind of Chemistry Facts Are We Going to Learn About (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S or send Email.. SDS of cas: 105-13-5

SDS of cas: 105-13-5. Authors Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S in AMER CHEMICAL SOC published article about in [Duong, Uyen; Ansari, Tharique N.; Parmar, Saurav; Sharma, Sudripet; Kozlowski, Pawel M.; Handa, Sachin] Univ Louisville, Dept Chem, Louisville, KY 40292 USA; [Jasinski, Jacek B.] Univ Louisville, Mat Characterizat, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA; [Plummer, Scott] Novartis Inst Biomed Res, Cambridge, MA 02139 USA; [Gallou, Fabrice] Novartis Pharma AG, CH-4056 Basel, Switzerland in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Upon visible-light irradiation, the heterogeneous polymer of PDI-Cu(I)-PDI (PDI = perylene diimide) generates charge transfer states that are subsequently quenched by molecular oxygen for their participation in redox activity. This insoluble polymeric Cu(I) is catalytically active for the oxidation of benzylic alcohols to corresponding aldehydes when suspended in dynamic micelles of PS-750-M. A broad substrate scope, excellent selectivity, and no over-oxidation reveal the catalyst robustness. The catalytic activity, control experiments, and time-dependent DFT calculations show the charge transfer states. The polymeric catalyst is entirely recyclable, as evidenced by the recycle studies using Scott’s recyclability test. The morphology, structure, copper’s oxidation state, and the catalyst’s thermal stability are determined by SEM, XPS, and TGA analysis.

Welcome to talk about 105-13-5, If you have any questions, you can contact Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S or send Email.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Lin, Q; Wang, WL; Yang, LP; Duan, XH or send Email.

Name: (4-Methoxyphenyl)methanol. Authors Lin, Q; Wang, WL; Yang, LP; Duan, XH in SPANDIDOS PUBL LTD published article about in [Yang, Liping; Duan, Xiaohua] Yunnan Univ Chinese Med, Yunnan Key Lab Dai & Yi Med, 1076 Yuhua Rd, Kunming 650500, Yunnan, Peoples R China; [Lin, Qing; Wang, Weili] Yunnan Univ Chinese Med, Dept Pharmacol, Kunming 650500, Yunnan, Peoples R China in 2021, Cited 40. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Damage to the blood-brain barrier (BBB) during the process of cerebral ischemic injury is a key factor that affects the treatment of this condition. The present study aimed to assess the potential effects of 4-methoxybenzyl alcohol (4-MA) on brain microvascular endothelial cells (bEnd.3) against oxygen-glucose deprivation/reperfusion (OGD/Rep) using an in vitro model that mimics in vivo ischemia/reperfusion injury. In addition, the present study aimed to explore whether this underlying mechanism was associated with the inhibition of pro-inflammatory factors and the activation status of the PI3K/Akt signaling pathway. bEnd.3 cells were subjected to OGD/Rep-induced injury before being treated with 4-MA, following which cell viability, lactate dehydrogenase (LDH) release and levels of nitric oxidase (NO) were detected by colorimetry, pro-inflammatory factors including tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta and IL-6, were detected by ELISA. The expression levels of occluding and claudin-5were evaluated by immunofluorescence staining. The expression levels of AKT, phosphorylated (p)-Akt, endothelial nitric oxide synthase (eNOS) and p-eNOS were also measured by western blot analysis. After bEnd.3 cells were subjected to OGD/Rep-induced injury, cell viability and NO levels were significantly decreased, whilst LDH leakage and inflammatory factor (TNF-alpha, IL-1 beta and IL-6) levels were significantly increased. Treatment with 4-MA significantly ameliorated cell viability, LDH release and the levels of NO and pro-inflammatory factors TNF-alpha, IL-1 beta and IL-6 as a result of OGD/Rep. Furthermore, treatment with 4-MA upregulated the expression of occludin, claudin-5, Akt and eNOS, in addition to increasing eNOS and AKT phosphorylation in bEnd.3 cells. These results suggest that 4-MA can alleviate OGD/Rep-induced injury in bEnd.3 cells by inhibiting inflammation and by activating the PI3K/AKT signaling pathway as a possible mechanism. Therefore, 4-MA can serve as a potential candidate for treating OGD/Rep-induced injury.

Name: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Lin, Q; Wang, WL; Yang, LP; Duan, XH or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An update on the compound challenge: 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Palav, A; Misal, B; Ganwir, P; Badani, P; Chaturbhuj, G or send Email.. Product Details of 105-13-5

In 2021 TETRAHEDRON LETT published article about SELECTIVE OXIDATION; N-BROMOSUCCINIMIDE; SULFATED POLYBORATE; BENZYLIC ALCOHOLS; EFFICIENT; CATALYST; ALDEHYDES; COMPLEX; DERIVATIVES; WATER in [Palav, Amey; Misal, Balu; Ganwir, Prerna; Chaturbhuj, Ganesh] Inst Chem Technol, Mumbai 400019, Maharashtra, India; [Palav, Amey; Misal, Balu] Loba Chem Pvt Ltd, Res & Dev Ctr, Tarapur 401506, Thane, India; [Badani, Purav] Univ Mumbai, Dept Chem, Mumbai 400098, Maharashtra, India in 2021, Cited 42. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Product Details of 105-13-5

Chlorine is the 20th most abundant element on the earth compared to bromine, iodine, and fluorine, a sulfonimide reagent, N-chloro-N-(phenylsulfonyl)benzenesulfonamide (NCBSI) was identified as a mild and selective oxidant. Without activation, the reagent was proved to oxidize primary and secondary alcohols as well as their symmetrical and mixed ethers to corresponding aldehydes and ketones. With recoverable PS-TEMPO catalyst, selective oxidation over chlorination of primary and secondary alcohols and their ethers with electron-donating substituents was achieved. The reagent precursor of NCBSI was recovered quantitatively and can be reused for synthesizing NCBSI. (C) 2021 Elsevier Ltd. All rights reserved.

Welcome to talk about 105-13-5, If you have any questions, you can contact Palav, A; Misal, B; Ganwir, P; Badani, P; Chaturbhuj, G or send Email.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts